Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Bioinformatics ; 40(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38569896

RESUMEN

MOTIVATION: Long-read sequencing technologies, an attractive solution for many applications, often suffer from higher error rates. Alignment of multiple reads can improve base-calling accuracy, but some applications, e.g. sequencing mutagenized libraries where multiple distinct clones differ by one or few variants, require the use of barcodes or unique molecular identifiers. Unfortunately, sequencing errors can interfere with correct barcode identification, and a given barcode sequence may be linked to multiple independent clones within a given library. RESULTS: Here we focus on the target application of sequencing mutagenized libraries in the context of multiplexed assays of variant effects (MAVEs). MAVEs are increasingly used to create comprehensive genotype-phenotype maps that can aid clinical variant interpretation. Many MAVE methods use long-read sequencing of barcoded mutant libraries for accurate association of barcode with genotype. Existing long-read sequencing pipelines do not account for inaccurate sequencing or nonunique barcodes. Here, we describe Pacybara, which handles these issues by clustering long reads based on the similarities of (error-prone) barcodes while also detecting barcodes that have been associated with multiple genotypes. Pacybara also detects recombinant (chimeric) clones and reduces false positive indel calls. In three example applications, we show that Pacybara identifies and correctly resolves these issues. AVAILABILITY AND IMPLEMENTATION: Pacybara, freely available at https://github.com/rothlab/pacybara, is implemented using R, Python, and bash for Linux. It runs on GNU/Linux HPC clusters via Slurm, PBS, or GridEngine schedulers. A single-machine simplex version is also available.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Programas Informáticos , Análisis de Secuencia de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Biblioteca de Genes , Genotipo , Análisis por Conglomerados
2.
Mol Cell ; 83(15): 2792-2809.e9, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37478847

RESUMEN

To maintain genome integrity, cells must accurately duplicate their genome and repair DNA lesions when they occur. To uncover genes that suppress DNA damage in human cells, we undertook flow-cytometry-based CRISPR-Cas9 screens that monitored DNA damage. We identified 160 genes whose mutation caused spontaneous DNA damage, a list enriched in essential genes, highlighting the importance of genomic integrity for cellular fitness. We also identified 227 genes whose mutation caused DNA damage in replication-perturbed cells. Among the genes characterized, we discovered that deoxyribose-phosphate aldolase DERA suppresses DNA damage caused by cytarabine (Ara-C) and that GNB1L, a gene implicated in 22q11.2 syndrome, promotes biogenesis of ATR and related phosphatidylinositol 3-kinase-related kinases (PIKKs). These results implicate defective PIKK biogenesis as a cause of some phenotypes associated with 22q11.2 syndrome. The phenotypic mapping of genes that suppress DNA damage therefore provides a rich resource to probe the cellular pathways that influence genome maintenance.


Asunto(s)
Sistemas CRISPR-Cas , Daño del ADN , Humanos , Mutación , Reparación del ADN , Fenotipo
3.
Genome Biol ; 24(1): 97, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37101203

RESUMEN

BACKGROUND: Glucokinase (GCK) regulates insulin secretion to maintain appropriate blood glucose levels. Sequence variants can alter GCK activity to cause hyperinsulinemic hypoglycemia or hyperglycemia associated with GCK-maturity-onset diabetes of the young (GCK-MODY), collectively affecting up to 10 million people worldwide. Patients with GCK-MODY are frequently misdiagnosed and treated unnecessarily. Genetic testing can prevent this but is hampered by the challenge of interpreting novel missense variants. RESULT: Here, we exploit a multiplexed yeast complementation assay to measure both hyper- and hypoactive GCK variation, capturing 97% of all possible missense and nonsense variants. Activity scores correlate with in vitro catalytic efficiency, fasting glucose levels in carriers of GCK variants and with evolutionary conservation. Hypoactive variants are concentrated at buried positions, near the active site, and at a region of known importance for GCK conformational dynamics. Some hyperactive variants shift the conformational equilibrium towards the active state through a relative destabilization of the inactive conformation. CONCLUSION: Our comprehensive assessment of GCK variant activity promises to facilitate variant interpretation and diagnosis, expand our mechanistic understanding of hyperactive variants, and inform development of therapeutics targeting GCK.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glucoquinasa , Humanos , Glucoquinasa/genética , Glucoquinasa/química , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/diagnóstico , Mutación Missense , Pruebas Genéticas , Mutación
4.
Nat Commun ; 14(1): 2162, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-37061542

RESUMEN

Generating reference maps of interactome networks illuminates genetic studies by providing a protein-centric approach to finding new components of existing pathways, complexes, and processes. We apply state-of-the-art methods to identify binary protein-protein interactions (PPIs) for Drosophila melanogaster. Four all-by-all yeast two-hybrid (Y2H) screens of > 10,000 Drosophila proteins result in the 'FlyBi' dataset of 8723 PPIs among 2939 proteins. Testing subsets of data from FlyBi and previous PPI studies using an orthogonal assay allows for normalization of data quality; subsequent integration of FlyBi and previous data results in an expanded binary Drosophila reference interaction network, DroRI, comprising 17,232 interactions among 6511 proteins. We use FlyBi data to generate an autophagy network, then validate in vivo using autophagy-related assays. The deformed wings (dwg) gene encodes a protein that is both a regulator and a target of autophagy. Altogether, these resources provide a foundation for building new hypotheses regarding protein networks and function.


Asunto(s)
Proteínas de Drosophila , Mapas de Interacción de Proteínas , Animales , Mapas de Interacción de Proteínas/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mapeo de Interacción de Proteínas/métodos , Técnicas del Sistema de Dos Híbridos
5.
bioRxiv ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36865234

RESUMEN

Long read sequencing technologies, an attractive solution for many applications, often suffer from higher error rates. Alignment of multiple reads can improve base-calling accuracy, but some applications, e.g. sequencing mutagenized libraries where multiple distinct clones differ by one or few variants, require the use of barcodes or unique molecular identifiers. Unfortunately, sequencing errors can interfere with correct barcode identification, and a given barcode sequence may be linked to multiple independent clones within a given library. Here we focus on the target application of sequencing mutagenized libraries in the context of multiplexed assays of variant effects (MAVEs). MAVEs are increasingly used to create comprehensive genotype-phenotype maps that can aid clinical variant interpretation. Many MAVE methods use long-read sequencing of barcoded mutant libraries for accurate association of barcode with genotype. Existing long-read sequencing pipelines do not account for inaccurate sequencing or non-unique barcodes. Here, we describe Pacybara, which handles these issues by clustering long reads based on the similarities of (error-prone) barcodes while also detecting barcodes that have been associated with multiple genotypes. Pacybara also detects recombinant (chimeric) clones and reduces false positive indel calls. In three example applications, we show that Pacybara identifies and correctly resolves these issues.

6.
Nat Biotechnol ; 41(1): 140-149, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36217029

RESUMEN

Understanding the mechanisms of coronavirus disease 2019 (COVID-19) disease severity to efficiently design therapies for emerging virus variants remains an urgent challenge of the ongoing pandemic. Infection and immune reactions are mediated by direct contacts between viral molecules and the host proteome, and the vast majority of these virus-host contacts (the 'contactome') have not been identified. Here, we present a systematic contactome map of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with the human host encompassing more than 200 binary virus-host and intraviral protein-protein interactions. We find that host proteins genetically associated with comorbidities of severe illness and long COVID are enriched in SARS-CoV-2 targeted network communities. Evaluating contactome-derived hypotheses, we demonstrate that viral NSP14 activates nuclear factor κB (NF-κB)-dependent transcription, even in the presence of cytokine signaling. Moreover, for several tested host proteins, genetic knock-down substantially reduces viral replication. Additionally, we show for USP25 that this effect is phenocopied by the small-molecule inhibitor AZ1. Our results connect viral proteins to human genetic architecture for COVID-19 severity and offer potential therapeutic targets.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , Proteoma/genética , Síndrome Post Agudo de COVID-19 , Replicación Viral/genética , Ubiquitina Tiolesterasa/farmacología
7.
Nature ; 580(7803): 402-408, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32296183

RESUMEN

Global insights into cellular organization and genome function require comprehensive understanding of the interactome networks that mediate genotype-phenotype relationships1,2. Here we present a human 'all-by-all' reference interactome map of human binary protein interactions, or 'HuRI'. With approximately 53,000 protein-protein interactions, HuRI has approximately four times as many such interactions as there are high-quality curated interactions from small-scale studies. The integration of HuRI with genome3, transcriptome4 and proteome5 data enables cellular function to be studied within most physiological or pathological cellular contexts. We demonstrate the utility of HuRI in identifying the specific subcellular roles of protein-protein interactions. Inferred tissue-specific networks reveal general principles for the formation of cellular context-specific functions and elucidate potential molecular mechanisms that might underlie tissue-specific phenotypes of Mendelian diseases. HuRI is a systematic proteome-wide reference that links genomic variation to phenotypic outcomes.


Asunto(s)
Proteoma/metabolismo , Espacio Extracelular/metabolismo , Humanos , Especificidad de Órganos , Mapeo de Interacción de Proteínas
8.
Genome Med ; 12(1): 13, 2020 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-32000841

RESUMEN

BACKGROUND: For the majority of rare clinical missense variants, pathogenicity status cannot currently be classified. Classical homocystinuria, characterized by elevated homocysteine in plasma and urine, is caused by variants in the cystathionine beta-synthase (CBS) gene, most of which are rare. With early detection, existing therapies are highly effective. METHODS: Damaging CBS variants can be detected based on their failure to restore growth in yeast cells lacking the yeast ortholog CYS4. This assay has only been applied reactively, after first observing a variant in patients. Using saturation codon-mutagenesis, en masse growth selection, and sequencing, we generated a comprehensive, proactive map of CBS missense variant function. RESULTS: Our CBS variant effect map far exceeds the performance of computational predictors of disease variants. Map scores correlated strongly with both disease severity (Spearman's ϱ = 0.9) and human clinical response to vitamin B6 (ϱ = 0.93). CONCLUSIONS: We demonstrate that highly multiplexed cell-based assays can yield proactive maps of variant function and patient response to therapy, even for rare variants not previously seen in the clinic.


Asunto(s)
Cistationina betasintasa/genética , Prueba de Complementación Genética/métodos , Pruebas Genéticas/métodos , Homocistinuria/genética , Mutación Missense , Cistationina betasintasa/metabolismo , Genotipo , Humanos , Fenotipo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética
9.
Cell Syst ; 10(1): 25-38.e10, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31668799

RESUMEN

Many traits are complex, depending non-additively on variant combinations. Even in model systems, such as the yeast S. cerevisiae, carrying out the high-order variant-combination testing needed to dissect complex traits remains a daunting challenge. Here, we describe "X-gene" genetic analysis (XGA), a strategy for engineering and profiling highly combinatorial gene perturbations. We demonstrate XGA on yeast ABC transporters by engineering 5,353 strains, each deleted for a random subset of 16 transporters, and profiling each strain's resistance to 16 compounds. XGA yielded 85,648 genotype-to-resistance observations, revealing high-order genetic interactions for 13 of the 16 transporters studied. Neural networks yielded intuitive functional models and guided exploration of fluconazole resistance, which was influenced non-additively by five genes. Together, our results showed that highly combinatorial genetic perturbation can functionally dissect complex traits, supporting pursuit of analogous strategies in human cells and other model systems.


Asunto(s)
Transporte Biológico/genética , Proteínas de Transporte de Membrana/genética , Humanos
10.
Bioinformatics ; 35(17): 3191-3193, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30649215

RESUMEN

SUMMARY: The promise of personalized genomic medicine depends on our ability to assess the functional impact of rare sequence variation. Multiplexed assays can experimentally measure the functional impact of missense variants on a massive scale. However, even after such assays, many missense variants remain poorly measured. Here we describe a software pipeline and application to impute missing information in experimentally determined variant effect maps. AVAILABILITY AND IMPLEMENTATION: http://impute.varianteffect.org source code: https://github.com/joewuca/imputation. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Programas Informáticos , Genoma , Genómica , Mutación Missense
11.
Mol Syst Biol ; 13(12): 957, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-29269382

RESUMEN

Although we now routinely sequence human genomes, we can confidently identify only a fraction of the sequence variants that have a functional impact. Here, we developed a deep mutational scanning framework that produces exhaustive maps for human missense variants by combining random codon mutagenesis and multiplexed functional variation assays with computational imputation and refinement. We applied this framework to four proteins corresponding to six human genes: UBE2I (encoding SUMO E2 conjugase), SUMO1 (small ubiquitin-like modifier), TPK1 (thiamin pyrophosphokinase), and CALM1/2/3 (three genes encoding the protein calmodulin). The resulting maps recapitulate known protein features and confidently identify pathogenic variation. Assays potentially amenable to deep mutational scanning are already available for 57% of human disease genes, suggesting that DMS could ultimately map functional variation for all human disease genes.


Asunto(s)
Análisis Mutacional de ADN/métodos , Mutación Missense/genética , Calmodulina/genética , Enfermedad/genética , Humanos , Aprendizaje Automático , Fenotipo , Filogenia , Reproducibilidad de los Resultados , Proteína SUMO-1/genética , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo
12.
Hum Mutat ; 38(9): 1051-1063, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28817247

RESUMEN

The exponential growth of genomic variants uncovered by next-generation sequencing necessitates efficient and accurate computational analyses to predict their functional effects. A number of computational methods have been developed for the task, but few unbiased comparisons of their performance are available. To fill the gap, The Critical Assessment of Genome Interpretation (CAGI) comprehensively assesses phenotypic predictions on newly collected experimental datasets. Here, we present the results of the SUMO conjugase challenge where participants were predicting functional effects of missense mutations in human SUMO-conjugating enzyme UBE2I. The performance of the predictors is similar to each other and is far from perfection. Evolutionary information from sequence alignments dominates the success: deleterious mutations at conserved positions and benign mutations at variable positions are accurately predicted. Prediction accuracy of other mutations remains unsatisfactory, and this fast-growing field of research is yet to learn the use of spatial structure information to improve the predictions significantly.


Asunto(s)
Biología Computacional/métodos , Mutación Missense , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Bases de Datos Genéticas , Evolución Molecular , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Modelos Moleculares , Unión Proteica , Selección Genética , Alineación de Secuencia , Enzimas Ubiquitina-Conjugadoras/química
13.
Mol Syst Biol ; 12(4): 863, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-27107012

RESUMEN

High-throughput binary protein interaction mapping is continuing to extend our understanding of cellular function and disease mechanisms. However, we remain one or two orders of magnitude away from a complete interaction map for humans and other major model organisms. Completion will require screening at substantially larger scales with many complementary assays, requiring further efficiency gains in proteome-scale interaction mapping. Here, we report Barcode Fusion Genetics-Yeast Two-Hybrid (BFG-Y2H), by which a full matrix of protein pairs can be screened in a single multiplexed strain pool. BFG-Y2H uses Cre recombination to fuse DNA barcodes from distinct plasmids, generating chimeric protein-pair barcodes that can be quantified via next-generation sequencing. We applied BFG-Y2H to four different matrices ranging in scale from ~25 K to 2.5 M protein pairs. The results show that BFG-Y2H increases the efficiency of protein matrix screening, with quality that is on par with state-of-the-art Y2H methods.


Asunto(s)
Centrosoma/metabolismo , Mapeo de Interacción de Proteínas/métodos , Proteoma/metabolismo , Saccharomyces cerevisiae/genética , Cromosomas Humanos/metabolismo , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Unión Proteica , Técnicas del Sistema de Dos Híbridos
14.
Cell ; 158(6): 1431-1443, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-25215497

RESUMEN

Transcription factor (TF) DNA sequence preferences direct their regulatory activity, but are currently known for only ∼1% of eukaryotic TFs. Broadly sampling DNA-binding domain (DBD) types from multiple eukaryotic clades, we determined DNA sequence preferences for >1,000 TFs encompassing 54 different DBD classes from 131 diverse eukaryotes. We find that closely related DBDs almost always have very similar DNA sequence preferences, enabling inference of motifs for ∼34% of the ∼170,000 known or predicted eukaryotic TFs. Sequences matching both measured and inferred motifs are enriched in chromatin immunoprecipitation sequencing (ChIP-seq) peaks and upstream of transcription start sites in diverse eukaryotic lineages. SNPs defining expression quantitative trait loci in Arabidopsis promoters are also enriched for predicted TF binding sites. Importantly, our motif "library" can be used to identify specific TFs whose binding may be altered by human disease risk alleles. These data present a powerful resource for mapping transcriptional networks across eukaryotes.


Asunto(s)
Arabidopsis/genética , Motivos de Nucleótidos , Análisis de Secuencia de ADN , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Inmunoprecipitación de Cromatina , Humanos , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Unión Proteica , Sitios de Carácter Cuantitativo
15.
Genome Biol ; 12(10): R102, 2011 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-22014239

RESUMEN

BACKGROUND: Cannabis sativa has been cultivated throughout human history as a source of fiber, oil and food, and for its medicinal and intoxicating properties. Selective breeding has produced cannabis plants for specific uses, including high-potency marijuana strains and hemp cultivars for fiber and seed production. The molecular biology underlying cannabinoid biosynthesis and other traits of interest is largely unexplored. RESULTS: We sequenced genomic DNA and RNA from the marijuana strain Purple Kush using shortread approaches. We report a draft haploid genome sequence of 534 Mb and a transcriptome of 30,000 genes. Comparison of the transcriptome of Purple Kush with that of the hemp cultivar 'Finola' revealed that many genes encoding proteins involved in cannabinoid and precursor pathways are more highly expressed in Purple Kush than in 'Finola'. The exclusive occurrence of Δ9-tetrahydrocannabinolic acid synthase in the Purple Kush transcriptome, and its replacement by cannabidiolic acid synthase in 'Finola', may explain why the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC) is produced in marijuana but not in hemp. Resequencing the hemp cultivars 'Finola' and 'USO-31' showed little difference in gene copy numbers of cannabinoid pathway enzymes. However, single nucleotide variant analysis uncovered a relatively high level of variation among four cannabis types, and supported a separation of marijuana and hemp. CONCLUSIONS: The availability of the Cannabis sativa genome enables the study of a multifunctional plant that occupies a unique role in human culture. Its availability will aid the development of therapeutic marijuana strains with tailored cannabinoid profiles and provide a basis for the breeding of hemp with improved agronomic characteristics.


Asunto(s)
Cannabis/genética , ADN de Plantas/genética , Genoma de Planta , ARN de Planta/genética , Transcriptoma , Secuencia de Bases , Cruzamiento , Cannabis/enzimología , Dronabinol/metabolismo , Flores/genética , Dosificación de Gen , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Oxidorreductasas Intramoleculares/genética , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Seudogenes , Semillas/genética
16.
Nucleic Acids Res ; 39(11): 4680-90, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21321018

RESUMEN

C2H2 zinc fingers (C2H2-ZFs) are the most prevalent type of vertebrate DNA-binding domain, and typically appear in tandem arrays (ZFAs), with sequential C2H2-ZFs each contacting three (or more) sequential bases. C2H2-ZFs can be assembled in a modular fashion, providing one explanation for their remarkable evolutionary success. Given a set of modules with defined three-base specificities, modular assembly also presents a way to construct artificial proteins with specific DNA-binding preferences. However, a recent survey of a large number of three-finger ZFAs engineered by modular assembly reported high failure rates (∼70%), casting doubt on the generality of modular assembly. Here, we used protein-binding microarrays to analyze 28 ZFAs that failed in the aforementioned study. Most (17) preferred specific sequences, which in all but one case resembled the intended target sequence. Like natural ZFAs, the engineered ZFAs typically yielded degenerate motifs, binding dozens to hundreds of related individual sequences. Thus, the failure of these proteins in previous assays is not due to lack of sequence-specific DNA-binding activity. Our findings underscore the relevance of individual C2H2-ZF sequence specificities within tandem arrays, and support the general ability of modular assembly to produce ZFAs with sequence-specific DNA-binding activity.


Asunto(s)
Proteínas de Unión al ADN/química , Dedos de Zinc , Secuencia de Bases , Análisis por Matrices de Proteínas/métodos , Unión Proteica , Ingeniería de Proteínas
17.
Mol Cell ; 31(6): 800-12, 2008 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-18922464

RESUMEN

Long DNA palindromes are implicated in chromosomal rearrangement, but their roles in the underlying molecular events remain a matter of conjecture. One notion is that palindromes induce DNA breaks after assuming a cruciform structure, the four-way DNA junction providing a target for cleavage by Holliday junction (HJ)-specific enzymes. Though compelling, few components of the "cruciform resolution" proposal are established. Here we address fundamental properties and genetic dependencies of palindromic DNA metabolism in eukaryotes. Plasmid-borne palindromes introduced into S. cerevisiae are site-specifically broken in vivo, and the breaks exhibit unique hallmarks of an HJ resolvase mechanism. In vivo resolution requires Mus81, for which the bacterial HJ resolvase RusA will substitute. These results provide confirmation of cruciform extrusion and resolution in the context of eukaryotic chromatin. Related observations are that, unchecked by a nuclease function provided by Mre11, episomal palindromes launch a self-perpetuating breakage-fusion-bridge-independent copy number increase termed "escape."


Asunto(s)
Roturas del ADN de Doble Cadena , ADN Cruciforme/metabolismo , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia Rica en At , Secuencia de Bases , Replicación del ADN , Dimerización , Proteínas de Escherichia coli/metabolismo , Amplificación de Genes , Reordenamiento Génico , Resolvasas de Unión Holliday/metabolismo , Humanos , Datos de Secuencia Molecular , Plásmidos/genética
18.
DNA Repair (Amst) ; 5(9-10): 1146-60, 2006 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-16807136

RESUMEN

DNA palindromes are a source of instability in eukaryotic genomes but remain under-investigated because they are difficult to study. Nonetheless, progress in the last year or so has begun to form a coherent picture of how DNA palindromes cause damage in eukaryotes and how this damage is opposed by cellular mechanisms. In yeast, the features of double strand DNA interruptions that appear at palindromic sites in vivo suggest that a resolvase-type activity creates the fractures by attacking a palindrome after it extrudes into a cruciform structure. Induction of DNA breaks in this fashion could be deterred through a Center-Break palindrome revision process as investigated in detail in mice. The MRX/MRN likely plays a pivotal role in prevention of palindrome-induced genome damage in eukaryotes.


Asunto(s)
Inestabilidad Cromosómica , Rotura Cromosómica , Cromosomas de los Mamíferos , Reparación del ADN , Genoma Humano , Animales , Secuencia de Bases , Humanos , Modelos Genéticos , Datos de Secuencia Molecular
19.
Mol Cell Biol ; 23(23): 8740-50, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14612414

RESUMEN

DNA palindromes are associated with rearrangement in a variety of organisms. A unique opportunity to examine the impact of a long palindrome in mammals is afforded by the Line 78 strain of mice. Previously it was found that the transgene in Line 78 is likely to be palindromic and that the symmetry of the transgene was responsible for a high level of germ line instability. Here we prove that Line 78 mice harbor a true 15.4-kb palindrome, and through the establishment of cell lines from Line 78 mice we have shown that the palindrome rearranges at the impressive rate of about 0.5% per population doubling. The rearrangements observed to arise from rapid palindrome modification are consistent with a center-break mechanism where double-strand breaks, created through hairpin nicking of an extruded cruciform, are imprecisely rejoined, thus introducing deletions at the palindrome center. Significantly, palindrome rearrangements in somatic tissue culture cells almost completely mirrored the structures generated in vivo in the mouse germ line. The close correspondence between germ line and somatic events indicates the possibility that center-break modification of palindromes is an important mechanism for preventing mutation in both contexts. Permanent cell lines carrying a verified palindrome provide an essential tool for future mechanistic analyses into the consequences of palindromy in the mammalian genome.


Asunto(s)
Rotura Cromosómica , ADN/genética , Reordenamiento Génico , Modelos Genéticos , Animales , Secuencia de Bases , Línea Celular , Intercambio Genético , Variación Genética , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Recombinación Genética , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA