Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nat Commun ; 12(1): 5590, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34552077

RESUMEN

Excessive replication of Saccharomyces cerevisiae Ty1 retrotransposons is regulated by Copy Number Control, a process requiring the p22/p18 protein produced from a sub-genomic transcript initiated within Ty1 GAG. In retrotransposition, Gag performs the capsid functions required for replication and re-integration. To minimize genomic damage, p22/p18 interrupts virus-like particle function by interaction with Gag. Here, we present structural, biophysical and genetic analyses of p18m, a minimal fragment of Gag that restricts transposition. The 2.8 Å crystal structure of p18m reveals an all α-helical protein related to mammalian and insect ARC proteins. p18m retains the capacity to dimerise in solution and the crystal structures reveal two exclusive dimer interfaces. We probe our findings through biophysical analysis of interface mutants as well as Ty1 transposition and p18m restriction in vivo. Our data provide insight into Ty1 Gag structure and suggest how p22/p18 might function in restriction through a blocking-of-assembly mechanism.


Asunto(s)
Variaciones en el Número de Copia de ADN , Productos del Gen gag/química , Retroelementos/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas Reguladoras de la Apoptosis/química , Cápside/química , Cápside/metabolismo , Proteínas de la Cápside/química , Cristalografía por Rayos X , Productos del Gen gag/genética , Productos del Gen gag/metabolismo , Mutación , Dominios Proteicos , Multimerización de Proteína , Estabilidad Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Sci Adv ; 6(1): eaay6354, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31911950

RESUMEN

The tetrapod neuronal protein ARC and its Drosophila melanogaster homolog, dARC1, have important but differing roles in neuronal development. Both are thought to originate through exaptation of ancient Ty3/Gypsy retrotransposon Gag, with their novel function relying on an original capacity for self-assembly and encapsidation of nucleic acids. Here, we present the crystal structure of dARC1 CA and examine the relationship between dARC1, mammalian ARC, and the CA protein of circulating retroviruses. We show that while the overall architecture is highly related to that of orthoretroviral and spumaretroviral CA, there are substantial deviations in both amino- and carboxyl-terminal domains, potentially affecting recruitment of partner proteins and particle assembly. The degree of sequence and structural divergence suggests that Ty3/Gypsy Gag has been exapted on two separate occasions and that, although mammalian ARC and dARC1 share functional similarity, the structures have undergone different adaptations after appropriation into the tetrapod and insect genomes.


Asunto(s)
Proteínas del Citoesqueleto/genética , Desarrollo Embrionario/genética , Evolución Molecular , Proteínas del Tejido Nervioso/genética , Retroelementos/genética , Secuencia de Aminoácidos , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Genoma de los Insectos/genética , Humanos , Mamíferos/genética , Mamíferos/crecimiento & desarrollo , Ratones , Neuronas/metabolismo , Retroviridae/genética
3.
Cell ; 169(6): 1078-1089.e13, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575671

RESUMEN

In flies, Centrosomin (Cnn) forms a phosphorylation-dependent scaffold that recruits proteins to the mitotic centrosome, but how Cnn assembles into a scaffold is unclear. We show that scaffold assembly requires conserved leucine zipper (LZ) and Cnn-motif 2 (CM2) domains that co-assemble into a 2:2 complex in vitro. We solve the crystal structure of the LZ:CM2 complex, revealing that both proteins form helical dimers that assemble into an unusual tetramer. A slightly longer version of the LZ can form micron-scale structures with CM2, whose assembly is stimulated by Plk1 phosphorylation in vitro. Mutating individual residues that perturb LZ:CM2 tetramer assembly perturbs the formation of these micron-scale assemblies in vitro and Cnn-scaffold assembly in vivo. Thus, Cnn molecules have an intrinsic ability to form large, LZ:CM2-interaction-dependent assemblies that are critical for mitotic centrosome assembly. These studies provide the first atomic insight into a molecular interaction required for mitotic centrosome assembly.


Asunto(s)
Centrosoma/química , Centrosoma/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Mitosis , Secuencia de Aminoácidos , Animales , Drosophila melanogaster/química , Proteínas de Homeodominio/metabolismo , Modelos Moleculares , Fosforilación , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/metabolismo , Alineación de Secuencia
4.
Biol Open ; 6(3): 381-389, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-28202467

RESUMEN

A small number of proteins form a conserved pathway of centriole duplication. In humans and flies, the binding of PLK4/Sak to STIL/Ana2 initiates daughter centriole assembly. In humans, this interaction is mediated by an interaction between the Polo-Box-3 (PB3) domain of PLK4 and the coiled-coil domain of STIL (HsCCD). We showed previously that the Drosophila Ana2 coiled-coil domain (DmCCD) is essential for centriole assembly, but it forms a tight parallel tetramer in vitro that likely precludes an interaction with PB3. Here, we show that the isolated HsCCD and HsPB3 domains form a mixture of homo-multimers in vitro, but these readily dissociate when mixed to form the previously described 1:1 HsCCD:HsPB3 complex. In contrast, although Drosophila PB3 (DmPB3) adopts a canonical polo-box fold, it does not detectably interact with DmCCD in vitro Thus, surprisingly, a key centriole assembly interaction interface appears to differ between humans and flies.

5.
Elife ; 4: e07236, 2015 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-26002084

RESUMEN

Sas-6 and Ana2/STIL proteins are required for centriole duplication and the homo-oligomerisation properties of Sas-6 help establish the ninefold symmetry of the central cartwheel that initiates centriole assembly. Ana2/STIL proteins are poorly conserved, but they all contain a predicted Central Coiled-Coil Domain (CCCD). Here we show that the Drosophila Ana2 CCCD forms a tetramer, and we solve its structure to 0.8 Å, revealing that it adopts an unusual parallel-coil topology. We also solve the structure of the Drosophila Sas-6 N-terminal domain to 2.9 Å revealing that it forms higher-order oligomers through canonical interactions. Point mutations that perturb Sas-6 or Ana2 homo-oligomerisation in vitro strongly perturb centriole assembly in vivo. Thus, efficient centriole duplication in flies requires the homo-oligomerisation of both Sas-6 and Ana2, and the Ana2 CCCD tetramer structure provides important information on how these proteins might cooperate to form a cartwheel structure.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Multimerización de Proteína , Animales , Cristalografía por Rayos X , Análisis Mutacional de ADN , Mutación Puntual , Conformación Proteica
6.
Elife ; 2: e01071, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-24052813

RESUMEN

Centrioles organise centrosomes and template cilia and flagella. Several centriole and centrosome proteins have been linked to microcephaly (MCPH), a neuro-developmental disease associated with small brain size. CPAP (MCPH6) and STIL (MCPH7) are required for centriole assembly, but it is unclear how mutations in them lead to microcephaly. We show that the TCP domain of CPAP constitutes a novel proline recognition domain that forms a 1:1 complex with a short, highly conserved target motif in STIL. Crystal structures of this complex reveal an unusual, all-ß structure adopted by the TCP domain and explain how a microcephaly mutation in CPAP compromises complex formation. Through point mutations, we demonstrate that complex formation is essential for centriole duplication in vivo. Our studies provide the first structural insight into how the malfunction of centriole proteins results in human disease and also reveal that the CPAP-STIL interaction constitutes a conserved key step in centriole biogenesis. DOI:http://dx.doi.org/10.7554/eLife.01071.001.


Asunto(s)
Centriolos , Péptidos y Proteínas de Señalización Intracelular/química , Microcefalia/fisiopatología , Proteínas Asociadas a Microtúbulos/química , Sitios de Unión , Humanos , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Mutación Puntual , Prolina/química , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA