Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
J Chromatogr A ; 1736: 465325, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39255652

RESUMEN

Taylor Dispersion Analysis (TDA) allows diffusion coefficient (D) or hydrodynamic radius (Rh) determination on a wide range of size between angstroms and about 300 nm. However, solute adsorption phenomena can affect the repeatability and reproducibility of TDA. Several numerical studies addressed the theoretical impact of solute adsorption in TDA, but very few experimental studies focus on this topic and no experimental methodologies were proposed so far to reduce the impact of adsorption in TDA. In this work, an experimental protocol, called plug-in-front TDA, consisting of adding the solute in the eluent at a lower concentration compared to the injected sample, was proposed to strongly limit the impact of adsorption on the Rh determination. This protocol was suggested based on the evidence that adsorption / desorption phenomena impacting narrow bore fused silica TDA in aqueous conditions are typically slow processes that can be counteracted by saturating the interaction sites during the experiments. Successful applications to proteins and mRNA lipid nanoparticles (LNP) in vaccine against Covid 19 and protein analysis were reported. TDA of proteins in conditions of strong interactions with the capillary surface was possible using the plug-in-front methodology. We anticipate that such experimental methodology will greatly help the experimentalist for implementing TDA in various applications.

2.
Anal Chem ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255837

RESUMEN

Capillary electrophoresis (CE) has emerged as a relevant technique for protein and biopharmaceutical analysis, as it combines high separation efficiency, sensitivity, and versatility. The use of capillary coatings, including successive multiple ionic-polymer layers (SMILs), reduces interactions between analytes and the capillary, further improving the CE performance. Nevertheless, separations done on SMIL coatings rarely surpass 500 × 103 plates/m. To obtain the best out of the CE, it is interesting to have a detailed look at the sources of peak dispersion. Separations of a mix of model proteins were performed on (poly(diallyldimethylammonium chloride)/poly(styrenesulfonate))2.5-coated capillaries at different electrical field strengths, leading to plate height H against migration velocity u plots that enabled a quantitative analysis of each contribution. Using this model, capillary lengths and injected volumes were systematically varied. For the first time, the contribution of sample electrophoretic heterogeneity to the total peak dispersion was deciphered for model proteins and a monoclonal antibody. Dispersion due to electromigration was seen to have an impact on plate heights in the case of triangular peaks of small molecules but not for proteins under the present conditions. UV and mass spectrometry detections were compared on the same capillary, providing valuable information on the impact of the detection type on separation efficiency. Close to 1 million plates/m were reached in the best conditions.

3.
Electrophoresis ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287066

RESUMEN

The characterization of the impurities of pharmaceutical monoclonal antibodies (mAbs) is crucial for their function and safety. Capillary zone electrophoresis (CZE) is one of the most efficient tools to separate charge variants of mAbs; however, peak characterization remains difficult, since the hereby used background electrolytes (BGEs) are not compatible with electrospray ionization-mass spectrometry (ESI-MS). Here, a method that allows the separation of intact mAb charge variants is presented using CZE-ESI-MS, combining a cationic capillary coating and an acidic BGE. Therefore, a successive multiple ionic-polymer layer coating was developed based on diethylaminoethyl-dextran-poly(sodium styrene sulfonate). This coating leads to a relatively low reversed electroosmotic flow (EOF) with an absolute mobility slightly higher than that of antibodies, enabling the separation of variants with slightly different mobilities. The potential of the coating is demonstrated using USP mAb003, where it was possible to separate C-terminal lysine variants from the main form, as well as several acidic variants and monoglycosylated mAb forms. The presented CZE-MS method can be applied to separate charge variants of a range of other antibodies such as infliximab, NISTmAB (Reference Material from the National Institute of Standards and Technology), adalimumab, and trastuzumab, demonstrating the general applicability for the separation of proteoforms of mAbs.

4.
Anal Chem ; 96(28): 11172-11180, 2024 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-38946102

RESUMEN

Improving separation efficiency in capillary electrophoresis (CE) requires systematic study of the influence of the electric field (or solute linear velocity) on plate height for a better understanding of the critical parameters controlling peak broadening. Even for poly(diallyldimethylammonium chloride) (PDADMAC)/poly(sodium styrenesulfonate) (PSS) successive multiple ionic-polymer layer (SMIL) coatings, which lead to efficient and reproducible separations of proteins, plate height increases with migration velocity, limiting the use of high electric fields in CE. Solute adsorption onto the capillary wall was generally considered as the main source of peak dispersion, explaining this plate height increase. However, experiments done with Taylor dispersion analysis and CE in the same conditions indicate that other phenomena may come into play. Protein adsorption with slow kinetics and few adsorption sites was established as a source of peak broadening for specific proteins. Surface charge inhomogeneity was also identified as a contribution to plate height due to local electroosmotic fluctuations. A model was proposed and applied to partial PDADMAC/poly(ethylene oxide) capillary coatings as well as PDADMAC/PSS SMIL coatings. Atomic force microscopy with topography and recognition imaging enabled the determination of roughness and charge distribution of the PDADMAC/PSS SMIL surface.


Asunto(s)
Electroósmosis , Electroforesis Capilar , Polietilenos , Electroforesis Capilar/métodos , Adsorción , Polietilenos/química , Proteínas/aislamiento & purificación , Proteínas/química , Proteínas/análisis , Compuestos de Amonio Cuaternario/química , Animales , Propiedades de Superficie
5.
Eur J Pharm Sci ; 200: 106831, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38871338

RESUMEN

Gadolinium-based contrast agents (GBCA) are complexes of a Gadolinium metal center and a linear or macrocyclic polyamino-carboxylic acid chelating agent. These agents are employed to enhance the visibility of deep abnormalities through MRI techniques. Knowing the precise dimensions of various GBCA is key parameter for understanding their in-vivo and pharmaco-kinetic behaviors, their diffusivity, as well as their relaxivity. However, conventional size characterization techniques fall short when dealing with these tiny molecules (≤1 nm). In this work, we propose to determine the size and diffusivity of gadolinium-based contrast agents using Taylor dispersion analysis (TDA). TDA provided a reliable measurement of the hydrodynamic diameter and the diffusion coefficient. The obtained results were compared to DOSY NMR (Diffusion-ordered Nuclear Magnetic Resonance Spectroscopy) and DFT (Density Functional Theory).


Asunto(s)
Medios de Contraste , Gadolinio , Medios de Contraste/química , Gadolinio/química , Difusión , Espectroscopía de Resonancia Magnética/métodos , Imagen por Resonancia Magnética/métodos , Tamaño de la Partícula , Hidrodinámica , Teoría Funcional de la Densidad
6.
J Chromatogr A ; 1720: 464802, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38507871

RESUMEN

Successive multiple ionic-polymer layers (SMILs) have long since proved their worth in capillary electrophoresis as they ensure stable electroosmotic flow (EOF) and relatively high separation efficiency. Recently, we demonstrated that plotting the plate height (H) against the solute migration velocity (u) enabled a reliable quantitative evaluation of the coating performances in terms of separation efficiency. In this work, various physicochemical and chemical parameters of the SMIL coating were studied and optimized in order to decrease the slope of the ascending part of the H vs u curve, which is known to be controlled by the homogeneity in charge of the coating surface and by the possible residual solute adsorption onto the coating surface. SMILs based on poly(diallyldimethylammonium chloride) (PDADMAC) and poly(sodium styrene sulfonate) (PSS) were formed and the effect of each polyelectrolyte molar mass and of the number of polyelectrolyte layers (up to 21 layers) was studied. The use of polyethylene imine as an anchoring first layer was considered. More polyelectrolyte couples based on PDADMAC, polybrene, PSS, poly(vinyl sulfate), and poly(acrylic acid) were tested. Finally, zwitterionic polymers based on the poly(α-l-lysine) scaffold were synthesized and used as the last layer of SMILs, illustrating their ability to finetune the EOF, while maintaining good separation efficiency.


Asunto(s)
Electroforesis Capilar , Polietilenos , Polímeros , Compuestos de Amonio Cuaternario , Polielectrolitos , Cationes , Electroforesis Capilar/métodos , Proteínas/análisis , Polietileneimina
7.
Talanta ; 272: 125815, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38402737

RESUMEN

Taylor dispersion analysis (TDA) is a simple and absolute method to determine the hydrodynamic radius of solutes that respond to UV or fluorescence detections. To broaden the application range of TDA, it is necessary to develop new detection modes. This study aims to study capacitively coupled contactless conductivity detector (C4D) for the analysis of charged macromolecules. The detection sensitivities and hydrodynamic radii were compared for a C4D detector and a UV detector on positively or negatively charged polymers responding both to UV and C4D (poly-L-lysine and poly(acrylamide-co-2-acrylamido-1-methyl-propanesulfonate). The influence of the composition of the background electrolyte on the detection sensitivity has been studied and optimized for C4D detection. The influence of the molar mass and of the polymer chemical charge density on the C4D and UV sensitivities of detection have been investigated based on well-characterized copolymers samples of different molar masses and charge densities. The advantages and disadvantages compared to UV detection, as well as the range of applicability of C4D detection in TDA were identified. C4D detection can be an alternative method for sizing charged polymers of reasonable molar mass (typically below 105 g mol-1) that do not absorb in UV. A decline in the sensitivity of detection in C4D was observed for higher molar masses.

8.
J Chromatogr A ; 1718: 464719, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38340458

RESUMEN

Dendrigraft poly(L-lysine) (DGL) constitutes a promising dendritic-like drug vehicle with high biocompatibility and straightforward access via ring-opening polymerization of N-carboxyanhydride in water. The characterization of the different generations of DGL is however challenging due to their heterogeneity in molar mass and branching ratio. In this work, free solution capillary electrophoresis was used to perform selective separation of the three first generations of DGL, and optimized conditions were developed to maximize inter-generation resolution. To reduce solute adsorption on the capillary wall, successive multiple ionic polymer layer coatings terminated with a polycation were deposited onto the inner wall surface. PEGylated polycation was also used as the last layer for the control of the electroosmotic flow (EOF), depending on the PEGylation degree and the methyl-polyethylene glycol (mPEG) chain length. 1 kDa mPEG chains and low grafting densities were found to be the best experimental conditions for a fine tuning of the EOF leading to high peak resolution. Molar mass polydispersity and polydispersity in effective electrophoretic mobility were successfully determined for the three first generations of DGL.


Asunto(s)
Polietilenglicoles , Polietilenos , Polilisina , Polielectrolitos , Electroforesis Capilar/métodos
9.
Int J Pharm ; 647: 123534, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37863448

RESUMEN

Organic solvents are commonly used in self-emulsifying drug delivery systems (SEDDS) to increase payloads of orally administered poorly soluble drugs. Since such solvents are released to a varying extent after emulsification, depending on their hydrophilic nature, they have a substantial impact on the cargo. To investigate this impact in detail, quercetin and curcumin as model drugs were incorporated in SEDDS comprising organic solvents (SEDDS-solvent) of logP < 2 and > 2. SEDDS were characterized regarding size, payload, emulsification time and solvent release. The effect of solvent release on the solubility of these drugs was determined. Preconcentrates of SEDDS-solventlogP < 2 emulsified more rapidly (< 1.5 min) forming smaller droplets than SEDDS-solventlogP > 2. Although, SEDDS-solventlogP < 2 preconcentrates provided higher quercetin solubility than the latter, a more pronounced solvent release caused a more rapid quercetin precipitation after emulsification (1.5 versus 4 h). In contrast, the more lipophilic curcumin was not affected by solvent release at all. Particularly, SEDDS-solventlogP < 2 preconcentrates provided high drug payloads without showing precipitation after emulsification. According to these results, the fate of moderate lipophilic drugs such as quercetin is governed by the release of solvent, whereas more lipophilic drugs such as curcumin remain inside the oily phase of SEDDS even when the solvent is released.


Asunto(s)
Curcumina , Quercetina , Emulsiones , Sistemas de Liberación de Medicamentos/métodos , Solubilidad , Solventes , Disponibilidad Biológica
10.
J Chromatogr A ; 1705: 464189, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37442068

RESUMEN

This study reports the development of a Taylor Dispersion Analysis (TDA) method for the size characterization of Extracellular Vesicles (EVs), which are highly heterogeneous nanoscale cell-derived vesicles (30-1000 nm). Here, we showed that TDA, conducted in uncoated fused silica capillaries (50 µm i.d.) using a conventional Capillary Electrophoresis instrument, is able to provide absolute sizing (requiring no calibration) of bovine milk-derived EVs in a small sample volume (∼ 7 nL) and over their entire size range, even the smallest ones (< 70 nm) not accessible via other techniques that provide nanoparticle sizing in suspension. TDA size measurements were repeatable (RSD < 10%) and the average EV sizes were found in the range of 120-210 nm, in very good agreement with those measured with Nanoparticle Tracking Analysis, commonly used for EV characterization. TDA allowed quantitative estimation of EVs for concentrations ≥ 2 × 1011 EVs/mL. Furthermore, TDA was able to detect minor changes in EV size (i.e. by ∼25 nm upon interaction with specific anti-CD9 antibodies of ∼150 kDa), and to highlight the impact of extraction methods (i.e. milk pretreatment: freezing, acid precipitation or centrifugation; the type of size-exclusion chromatography column) and of fluorescent labeling (i.e. intravesicular or surface labeling) on the isolated EV population size. In parallel to EV sizing, TDA allowed to detect molecular contaminants (average sizes ∼1-13 nm) present within the sample, rendering this method a valuable tool to assess the quality and quantity of EV isolates.


Asunto(s)
Capilares , Vesículas Extracelulares , Centrifugación , Control de Calidad
11.
J Chromatogr A ; 1695: 463912, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-36972664

RESUMEN

Since the introduction of polyelectrolyte multilayers to protein separation in capillary electrophoresis (CE), some progress has been made to improve separation efficiency by varying different parameters, such as buffer ionic strength and pH, polyelectrolyte nature and number of deposited layers. However, CE is often overlooked as it lacks robustness compared to other separation techniques. In this work, critical parameters for the construction of efficient and reproducible Successive multiple ionic-polymer layers (SMIL) coatings were investigated, focusing on experimental conditions, such as vial preparation and sample conservation which were shown to have a significant impact on separation performances. In addition to repeatability, intra- and inter-capillary precision were assessed, demonstrating the improved capability of poly(diallyldimethylammonium chloride) / poly(sodium styrene sulfonate) (PDADMAC / PSS) coated capillaries to separate model proteins in a 2 M acetic acid background electrolyte when all the correct precautions are put in place (with run to run%RSD(tm) < 1.8%, day to day%RSD(tm) < 3.2% and cap to cap%RSD(tm) < 4.6%). The approach recently introduced to calculate retention factors was used to quantify residual protein adsorption onto the capillary wall and to assess capillary coating performances. 5-layer PDADAMAC / PSS coatings led to average retention factors for the five model proteins of ∼4×10-2. These values suggest a relatively low residual protein adsorption leading to reasonably flat plate height vs linear velocity curves, obtained by performing electrophoretic separations at different electrical voltages (-10 to -25 kV).


Asunto(s)
Electroforesis Capilar , Polielectrolitos/química , Electroforesis Capilar/métodos , Proteínas/aislamiento & purificación , Reproducibilidad de los Resultados
12.
J Chromatogr A ; 1692: 463837, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36804799

RESUMEN

Protein adsorption on the inner wall of the fused silica capillary wall is an important concern for capillary electrophoresis (CE) analysis since it is mainly responsible for separation efficiency reduction. Successive Multiple Ionic-polymer Layers (SMIL) are used as capillary coatings to limit protein adsorption, but even low residual adsorption strongly impacts the separation efficiency, especially at high separation voltages. In this work, the influence of the chemical nature and the PEGylation of the polyelectrolyte deposited in the last layer of the SMIL coating was investigated on the separation performances of a mixture of four model intact proteins (myoglobin (Myo), trypsin inhibitor (TI), ribonuclease a (RNAse A) and lysozyme (Lyz)). Poly(allylamine hydrochloride) (PAH), polyethyleneimine (PEI), ε-poly(L-lysine) (εPLL) and α-poly(L-lysine) (αPLL) were compared before and after chemical modification with polyethyleneglycol (PEG) of different chain lengths. The experimental results obtained by performing electrophoretic separations at different separation voltages allowed determining the residual retention factor of the proteins onto the capillary wall via the determination of the plate height at different solute velocities and demonstrated a strong impact of the polycationic last layer on the electroosmotic mobility, the separation efficiency and the overall resolution. Properties of SMIL coatings were also characterized by quartz microbalance and atomic force microscopy, demonstrating a glassy structure of the films.


Asunto(s)
Polilisina , Polímeros , Polielectrolitos/química , Polímeros/química , Iones , Electroforesis Capilar/métodos , Mioglobina
13.
Electrophoresis ; 44(7-8): 701-710, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36308033

RESUMEN

The use of fluorescently tagged amyloid peptides, implicated in Alzheimer's disease, to study their aggregation at low concentrations is a common method; however, the fluorescent tag should not introduce a bias in the aggregation process. In this work, native amyloid peptides Aß(1-40) and Aß(1-42) and fluorescein-5-isothiocyanate (FITC), tagged ones, were studied using Taylor dispersion analysis coupled with a simultaneous UV and light-emitting diode-induced fluorescence detection, to unravel the effect of FITC on the aggregation process. For that, a total concentration of 100 µM of peptides consisting of a mixture of native and tagged ones (up to 10% in moles) was applied. Results demonstrated that FITC had a strong inhibition effect upon the aggregation behaviour of Aß(1-42), whereas for Aß(1-40), only a retardation in kinetics was observed. It was also shown that when mixed solutions of Aß(1-40) and Aß(1-42) are used, the Aß(1-42) alloform was the leading peptide in the aggregation process, and when the latter was tagged, the aggregation kinetics decreased but the lifetime of potentially toxic oligomers was drastically increased. These results confirmed that the hydrophilicity of the N-terminus part of the peptide plays a major role in the aggregation process.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Humanos , Fluoresceína-5-Isotiocianato , Fragmentos de Péptidos , Colorantes Fluorescentes
14.
Gene Ther ; 30(5): 421-428, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36316446

RESUMEN

Lipid nanoparticles (LNPs) are currently the most advanced non-viral clinically approved messenger ribonucleic acid (mRNA) delivery systems. The ability of a mRNA vaccine to have a therapeutic effect is related to the capacity of LNPs to deliver the nucleic acid intact into cells. The role of LNPs is to protect mRNA, especially from degradation by ribonucleases (RNases) and to allow it to access the cytoplasm of cells where it can be translated into the protein of interest. LNPs enter cells by endocytosis and their size is a critical parameter impacting their cellular internalization. In this work, we studied different formulation process parameters impacting LNPs size. Taylor dispersion analysis (TDA) was used to determine the LNPs size and size distribution and the results were compared with those obtained by Dynamic Light Scattering (DLS). TDA was also used to study both the degradation of mRNA in the presence of RNases and the percentage of mRNA encapsulation within LNPs.


Asunto(s)
Liposomas , Nanopartículas , Ribonucleasas , ARN Mensajero , Lípidos , Vacunas de ARNm , ARN Interferente Pequeño/genética
15.
Methods Mol Biol ; 2531: 69-76, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35941479

RESUMEN

Adsorption of analytes, e.g., proteins, often interfere with separation in CE, due to the relatively large surface of the narrow capillary. Coatings often are applied to prevent adsorption and to determine the electroosmotic flow (EOF), which is of major importance for the separation in CE. Successive multiple ionic-polymer layer (SMIL) coatings are frequently used for protein analysis in capillary electrophoresis resulting in high separation efficiency and repeatability. Here, the coating procedure of a five-layer SMIL coating is described using quaternized diethylaminoethyl dextran (DEAEDq) as polycation and poly(methacrylic acid) (PMA) as polyanion. Depending on the analyte, different polyions may be used to increase separation efficiency. However, the coating procedure remains the same.To demonstrate the applicability of SMIL coatings in CE-MS, human hemoglobin was measured in a BGE containing 2 M acetic acid. DEAEDq-PMA coating was found to be the most suitable for hemoglobin analysis due to relatively low reversed electroosmotic mobility leading to increased electrophoretic resolution of closely related proteoforms. Thereby, not only alpha and beta subunit of the hemoglobin could be separated, but also positional isoforms of glycated and carbamylated species were separated within 24 min.


Asunto(s)
Electroforesis Capilar , Polímeros , Electroósmosis , Electroforesis Capilar/métodos , Hemoglobinas , Humanos , Iones , Espectrometría de Masas
16.
Chempluschem ; 87(4): e202200028, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35388990

RESUMEN

Capillary electrophoresis (CE) has been proven to be a performant analytical method to analyze both small and macro molecules. Indeed, it is capable of separating compounds of the same nature according to differences in their charge to size ratios, particularly proteins, monoclonal antibodies and peptides. However, one of the major obstacles to reach high separation efficiency remains the adsorption of solutes on the capillary wall. Among the different coating approaches used to control and minimize solute adsorption, polyelectrolyte multilayers can be applied to CE as a versatile approach. These coatings are made up of alternating layers of polycations and polyanions, and may be used in acidic, neutral or basic conditions depending on the solutes to be analyzed. This Review provides an overview of Successive Multiple Ionic-polymer Layer (SMIL) coatings used in CE, looking at how different parameters induce variations on the electro-osmotic flow (EOF), separation efficiency and coating stability, as well as their promising applications in the biopharmaceutical field.

17.
Anal Chem ; 94(11): 4677-4685, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35254048

RESUMEN

Messenger RNA vaccines have come into the spotlight as a promising and adaptive alternative to conventional vaccine approaches. The efficacy of mRNA vaccines relies on the ability of mRNA to reach the cytoplasm of cells, where it can be translated into proteins of interest, allowing it to trigger the immune response. However, unprotected mRNA is unstable and susceptible to degradation by exo- and endonucleases, and its negative charges are electrostatically repulsed by the anionic cell membranes. Therefore, mRNA needs a delivery system that protects the nucleic acid from degradation and allows it to enter into the cells. Lipid nanoparticles (LNPs) represent a nonviral leading vector for mRNA delivery. Physicochemical parameters of LNPs, including their size and their charge, directly impact their in vivo behavior and, therefore, their cellular internalization. In this work, Taylor dispersion analysis (TDA) was used as a new methodology for the characterization of the size and polydispersity of LNPs, and capillary electrophoresis (CE) was used for the determination of LNP global charge. The results obtained were compared with those obtained by dynamic light scattering (DLS) and laser Doppler electrophoresis (LDE).


Asunto(s)
Nanopartículas , Vacunas de ARNm , Liposomas , Nanopartículas/química , ARN Mensajero/química , ARN Mensajero/genética , Vacunas Sintéticas
18.
J Chromatogr A ; 1670: 462949, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35334373

RESUMEN

Taylor dispersion analysis (TDA) was successfully applied to obtain broadly distributed, ultrahigh molar masses of industrial anionic polyacrylamides (IPAMs) up to 25 × 106 g/mol, far beyond the limits of Size Exclusion Chromatography (SEC) (about 7.3 × 106 g/mol for anionic polyacrylamides standards (APAM)). Two protocols of TDA differing in capillary surface and rinsing procedure were employed: (i) bare fused silica capillaries under intensive between-run rinsing with 1 M NaOH, and (ii) fused silica capillaries coated with polyelectrolyte multilayers composed of polydiallyldimethylammonium chloride polycation and sodium polystyrenesulfonate polyanion under simple rinsing with background electrolyte. Both cases led to similar results and in agreement with those obtained by static light scattering, the rinsing capillary step being much shorter in the second case (8 min instead of 30 min). The data processing of the obtained taylorgrams was realized using multiple-Gaussian fitting of the overall taylorgrams, by separating the contribution of low molar mass impurities from the polymeric profiles, and by determining the mean hydrodynamic radii and diffusion coefficients of the polymers. The molar masses of ultra-high molar mass industrial anionic polyacrylamides (IPAM) were derived from the hydrodynamic radii according to logRh versus logMw linear correlation established with APAM standards. Compared to capillary gel electrophoresis for which the size separation was only feasible up to Mw ∼ 10×106 g/mol due to field induced polymer aggregation, TDA largely extended the range of accessible molar mass with easy-to-run and time saving assays.


Asunto(s)
Electroforesis Capilar , Polímeros , Aniones , Electroforesis Capilar/métodos , Peso Molecular , Polielectrolitos , Polímeros/química , Dióxido de Silicio
19.
ACS Chem Neurosci ; 13(6): 786-795, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35201761

RESUMEN

Aggregation of amyloid ß peptides is known to be one of the main processes responsible for Alzheimer's disease. The resulting dementia is believed to be due in part to the formation of potentially toxic oligomers. However, the study of such intermediates and the understanding of how they form are very challenging because they are heterogeneous and transient in nature. Unfortunately, few techniques can quantify, in real time, the proportion and the size of the different soluble species during the aggregation process. In a previous work (Deleanu et al. Anal. Chem. 2021, 93, 6523-6533), we showed the potential of Taylor dispersion analysis (TDA) in amyloid speciation during the aggregation process of Aß (1-40) and Aß (1-42). The current work aims at exploring in detail the aggregation of amyloid Aß (1-40):Aß (1-42) peptide mixtures with different proportions of each peptide (1:0, 3:1, 1:1, 1:3, and 0:1) using TDA and atomic force microscopy (AFM). TDA allowed for monitoring the kinetics of the amyloid assembly and quantifying the transient intermediates. Complementarily, AFM allowed the formation of insoluble fibrils to be visualized. Together, the two techniques enabled us to study the influence of the peptide ratios on the kinetics and the formation of potentially toxic oligomeric species.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Amiloide , Péptidos beta-Amiloides , Humanos , Cinética , Microscopía de Fuerza Atómica , Fragmentos de Péptidos
20.
J Chromatogr A ; 1667: 462838, 2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35149413

RESUMEN

The development of combination vaccines is essential to reduce the number of injections, shorten vaccination schedules and increase vaccination coverage. Vaccine adjuvants are used to modulate and enhance the immune response induced by the antigens. To support the development of combination vaccines, the study of antigen-adjuvant interactions in the final vaccine formulations is required as interaction competitions may take place between the different antigens. In the present work, a capillary zone electrophoresis (CZE) methodology was firstly optimized on six model proteins, namely bovine serum albumin, ß-lactoglobulin, myoglobin, ribonuclease A, cytochrome C and lysozyme. A cationic dynamic coating (polybrene) and a zwitterionic amino acid additive (ß-alanine) in the background electrolyte were used to reduce the phenomena of protein adsorption on the inner wall of the capillary and thus optimize the separation efficiency of the proteins. The developed methodology was then used to separate three strains from inactivated polio virus, each strain being a whole virus composed of copies of 4 viral proteins and study their interaction with aluminum oxyhydroxide. The antigen-adjuvant interactions could be modulated by addition of phosphate ions playing the role of competitors for the poliovirus.


Asunto(s)
Aluminio/química , Poliovirus , Electroforesis Capilar , Poliovirus/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA