Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Environ Epidemiol ; 8(1): e286, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38343736

RESUMEN

Background: Early-life exposure to nonessential (toxic) and essential trace elements can influence child development. Although infant formula powders and the water used to reconstitute them can contain higher concentrations of many elements compared with human milk, the influence of feeding mode on reliable biomarkers of infant exposure has rarely been demonstrated. Methods: We evaluated associations between urinary biomarkers and feeding mode (exclusively human milk, exclusively formula, or combination-fed) for four toxic (arsenic, cadmium, nickel, and uranium) and three essential elements (cobalt, molybdenum, and selenium) using general linear models. Results: A total of 462 participants from the rural New Hampshire Birth Cohort Study were on average 6 weeks old between July 2012 and March 2019 and had urine samples, 3-day food diaries, and relevant covariate data available. In adjusted models, urinary arsenic was 5.15 (95% confidence interval = 4.04, 6.58), molybdenum was 19.02 (14.13-25.59), and selenium was 1.51 (1.35-1.68) times higher in infants fed exclusively with formula compared with infants fed exclusively with human milk. By contrast, urinary uranium was 0.59 (0.46-0.75) and cobalt was 0.78 (0.65-0.95) times lower with formula feeding than human milk feeding. Conclusion: Our findings suggest that infant exposure to several potentially toxic elements varies by feeding mode, as concentrations of reliable urinary biomarkers were higher with formula or human milk, depending on the element. Importantly, exposure to arsenic increased with household tap water arsenic regardless of feeding mode, suggesting that all infants could be at risk in populations with high concentrations of arsenic in drinking water.

2.
Expo Health ; 15(1): 269-279, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36873246

RESUMEN

Even the low levels of non-essential elements exposure common in the US may have health consequences especially early in life. However, little is known about the infant's dynamic exposure to essential and non-essential elements. This study aims to evaluate exposure to essential and non-essential elements during infants' first year of life and to explore the association between the exposure and rice consumption. Paired urine samples from infants enrolled in the New Hampshire Birth Cohort Study (NHBCS) were collected at approximately 6 weeks (exclusively breastfed) and at 1 year of age after weaning (n = 187). A further independent subgroup of NHBCS infants with details about rice consumption at 1 year of age also was included (n = 147). Urinary concentrations of 8 essential (Co, Cr, Cu, Fe, Mn, Mo, Ni, and Se) and 9 non-essential (Al, As, Cd, Hg, Pb, Sb, Sn, V, and U) elements were determined as a measure of exposure. Several essential (Co, Fe, Mo, Ni, and Se) and non-essential (Al, As, Cd, Hg, Pb, Sb, Sn, and V) elements had higher concentrations at 1 year than at 6 weeks of age. The highest increases were for urinary As and Mo with median concentrations of 0.20 and 1.02 µg/L at 6 weeks and 2.31 and 45.36 µg/L at 1 year of age, respectively. At 1 year of age, As and Mo urine concentrations were related to rice consumption. Further efforts are necessary to minimize exposure to non-essential elements while retaining essential elements to protect and promote children's health. Supplementary Information: The online version contains supplementary material available at 10.1007/s12403-022-00489-x.

3.
Sci Rep ; 12(1): 4450, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35292690

RESUMEN

Rice products marketed in the USA, including baby rice cereal, contain inorganic arsenic, a putative immunotoxin. We sought to determine whether the timing of introduction of rice cereal in the first year of life influences occurrence of infections, respiratory symptoms, and allergy. Among 572 infants from the New Hampshire Birth Cohort Study, we used generalized estimating equation, adjusted for maternal smoking during pregnancy, marital status, education attainment, pre-pregnancy body mass index, maternal age at enrollment, infant birth weight, and breastfeeding history. Among 572 infants, each month earlier of introduction to rice cereal was associated with increased risks of subsequent upper respiratory tract infections (relative risk, RR = 1.04; 95% CI: 1.00-1.09); lower respiratory tract infections (RR = 1.19; 95% CI: 1.02-1.39); acute respiratory symptoms including wheeze, difficulty breathing, and cough (RR = 1.10; 95% CI: 1.00-1.22); fever requiring a prescription medicine (RR = 1.22; 95% CI: 1.02-1.45) and allergy diagnosed by a physician (RR = 1.20; 95% CI: 1.06-1.36). No clear associations were observed with gastrointestinal symptoms. Our findings suggest that introduction of rice cereal earlier may influence infants' susceptibility to respiratory infections and allergy.


Asunto(s)
Hipersensibilidad , Oryza , Infecciones del Sistema Respiratorio , Estudios de Cohortes , Grano Comestible , Femenino , Humanos , Hipersensibilidad/epidemiología , Lactante , Embarazo , Infecciones del Sistema Respiratorio/epidemiología , Estados Unidos/epidemiología
4.
Ecol Appl ; 32(5): e2590, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35343013

RESUMEN

Near-term ecological forecasts provide resource managers advance notice of changes in ecosystem services, such as fisheries stocks, timber yields, or water quality. Importantly, ecological forecasts can identify where there is uncertainty in the forecasting system, which is necessary to improve forecast skill and guide interpretation of forecast results. Uncertainty partitioning identifies the relative contributions to total forecast variance introduced by different sources, including specification of the model structure, errors in driver data, and estimation of current states (initial conditions). Uncertainty partitioning could be particularly useful in improving forecasts of highly variable cyanobacterial densities, which are difficult to predict and present a persistent challenge for lake managers. As cyanobacteria can produce toxic and unsightly surface scums, advance warning when cyanobacterial densities are increasing could help managers mitigate water quality issues. Here, we fit 13 Bayesian state-space models to evaluate different hypotheses about cyanobacterial densities in a low nutrient lake that experiences sporadic surface scums of the toxin-producing cyanobacterium, Gloeotrichia echinulata. We used data from several summers of weekly cyanobacteria samples to identify dominant sources of uncertainty for near-term (1- to 4-week) forecasts of G. echinulata densities. Water temperature was an important predictor of cyanobacterial densities during model fitting and at the 4-week forecast horizon. However, no physical covariates improved model performance over a simple model including the previous week's densities in 1-week-ahead forecasts. Even the best fit models exhibited large variance in forecasted cyanobacterial densities and did not capture rare peak occurrences, indicating that significant explanatory variables when fitting models to historical data are not always effective for forecasting. Uncertainty partitioning revealed that model process specification and initial conditions dominated forecast uncertainty. These findings indicate that long-term studies of different cyanobacterial life stages and movement in the water column as well as measurements of drivers relevant to different life stages could improve model process representation of cyanobacteria abundance. In addition, improved observation protocols could better define initial conditions and reduce spatial misalignment of environmental data and cyanobacteria observations. Our results emphasize the importance of ecological forecasting principles and uncertainty partitioning to refine and understand predictive capacity across ecosystems.


Asunto(s)
Cianobacterias , Lagos , Teorema de Bayes , Ecosistema , Eutrofización , Incertidumbre
5.
Ecology ; 103(4): e3650, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35112356

RESUMEN

Synchronous dynamics (fluctuations that occur in unison) are universal phenomena with widespread implications for ecological stability. Synchronous dynamics can amplify the destabilizing effect of environmental variability on ecosystem functions such as productivity, whereas the inverse, compensatory dynamics, can stabilize function. Here we combine simulation and empirical analyses to elucidate mechanisms that underlie patterns of synchronous versus compensatory dynamics. In both simulated and empirical communities, we show that synchronous and compensatory dynamics are not mutually exclusive but instead can vary by timescale. Our simulations identify multiple mechanisms that can generate timescale-specific patterns, including different environmental drivers, diverse life histories, dispersal, and non-stationary dynamics. We find that traditional metrics for quantifying synchronous dynamics are often biased toward long-term drivers and may miss the importance of short-term drivers. Our findings indicate key mechanisms to consider when assessing synchronous versus compensatory dynamics and our approach provides a pathway for disentangling these dynamics in natural systems.


Asunto(s)
Ecosistema , Dinámica Poblacional
6.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35193976

RESUMEN

Human-induced salinization caused by the use of road deicing salts, agricultural practices, mining operations, and climate change is a major threat to the biodiversity and functioning of freshwater ecosystems. Yet, it is unclear if freshwater ecosystems are protected from salinization by current water quality guidelines. Leveraging an experimental network of land-based and in-lake mesocosms across North America and Europe, we tested how salinization-indicated as elevated chloride (Cl-) concentration-will affect lake food webs and if two of the lowest Cl- thresholds found globally are sufficient to protect these food webs. Our results indicated that salinization will cause substantial zooplankton mortality at the lowest Cl- thresholds established in Canada (120 mg Cl-/L) and the United States (230 mg Cl-/L) and throughout Europe where Cl- thresholds are generally higher. For instance, at 73% of our study sites, Cl- concentrations that caused a ≥50% reduction in cladoceran abundance were at or below Cl- thresholds in Canada, in the United States, and throughout Europe. Similar trends occurred for copepod and rotifer zooplankton. The loss of zooplankton triggered a cascading effect causing an increase in phytoplankton biomass at 47% of study sites. Such changes in lake food webs could alter nutrient cycling and water clarity and trigger declines in fish production. Current Cl- thresholds across North America and Europe clearly do not adequately protect lake food webs. Water quality guidelines should be developed where they do not exist, and there is an urgent need to reassess existing guidelines to protect lake ecosystems from human-induced salinization.


Asunto(s)
Guías como Asunto , Lagos , Salinidad , Calidad del Agua , Animales , Efectos Antropogénicos , Ecosistema , Europa (Continente) , América del Norte , Zooplancton
7.
Philos Trans R Soc Lond B Biol Sci ; 376(1835): 20200343, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34420392

RESUMEN

Synchrony among population fluctuations of multiple coexisting species has a major impact on community stability, i.e. on the relative temporal constancy of aggregate properties such as total community biomass. However, synchrony and its impacts are usually measured using covariance methods, which do not account for whether species abundances may be more correlated when species are relatively common than when they are scarce, or vice versa. Recent work showed that species commonly exhibit such 'asymmetric tail associations'. We here consider the influence of asymmetric tail associations on community stability. We develop a 'skewness ratio' which quantifies how much species relationships and tail associations modify stability. The skewness ratio complements the classic variance ratio and related metrics. Using multi-decadal grassland datasets, we show that accounting for tail associations gives new viewpoints on synchrony and stability; e.g. species associations can alter community stability differentially for community crashes or explosions to high values, a fact not previously detectable. Species associations can mitigate explosions of community abundance to high values, increasing one aspect of stability, while simultaneously exacerbating crashes to low values, decreasing another aspect of stability; or vice versa. Our work initiates a new, more flexible paradigm for exploring species relationships and community stability. This article is part of the theme issue 'Synchrony and rhythm interaction: from the brain to behavioural ecology'.


Asunto(s)
Biodiversidad , Biomasa , Ecosistema , Periodicidad , Ecología , Dinámica Poblacional
8.
Ecology ; 102(11): e03486, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34289105

RESUMEN

Synchrony is broadly important to population and community dynamics due to its ubiquity and implications for extinction dynamics, system stability, and species diversity. Investigations of synchrony in community ecology have tended to focus on covariance in the abundances of multiple species in a single location. Yet, the importance of regional environmental variation and spatial processes in community dynamics suggests that community properties, such as species richness, could fluctuate synchronously across patches in a metacommunity, in an analog of population spatial synchrony. Here, we test the prevalence of this phenomenon and the conditions under which it may occur using theoretical simulations and empirical data from 20 marine and terrestrial metacommunities. Additionally, given the importance of biodiversity for stability of ecosystem function, we posit that spatial synchrony in species richness is strongly related to stability. Our findings show that metacommunities often exhibit spatial synchrony in species richness. We also found that richness synchrony can be driven by environmental stochasticity and dispersal, two mechanisms of population spatial synchrony. Richness synchrony also depended on community structure, including species evenness and beta diversity. Strikingly, ecosystem stability was more strongly related to richness synchrony than to species richness itself, likely because richness synchrony integrates information about community processes and environmental forcing. Our study highlights a new approach for studying spatiotemporal community dynamics and emphasizes the spatial dimensions of community dynamics and stability.


Asunto(s)
Biodiversidad , Ecosistema , Ecología
9.
Environ Res ; 180: 108604, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31710845

RESUMEN

BACKGROUND: We have previously reported that in utero arsenic exposure is associated with increased length and other anthropometric outcomes at birth in a U.S. cohort. However, it is unknown whether these anthropometric differences persist through early life. OBJECTIVES: We assessed in utero arsenic exposure in relation to attained anthropometry and growth trajectories through the first year of life. METHODS: Among 760 mother-infant pairs from the New Hampshire Birth Cohort Study, we assessed in utero arsenic exposure using maternal second trimester urinary arsenic and assessed infant growth from medical records. RESULTS: Median maternal second trimester total urinary arsenic (tAs; inorganic arsenic + monomethylarsonic acid + dimethylarsinic acid) was 3.96 µg/L (IQR: 2.02, 6.72). In adjusted linear mixed effects models, each doubling of maternal urinary tAs was associated with a 0.05 increase in length WHO Z score (95% CI: 0, 0.09) over the first year of life which corresponds to an approximately 0.12 cm increase in males and 0.13 cm increase in females at 12 months. No associations were observed between urinary tAs and attained weight, weight-for-length, or head circumference. In adjusted piecewise linear mixed effects models, each doubling of urinary tAs was associated with a 0.07 (95% CI: 0.02, 0.12) cm per month decreased length growth rate through 3.5 months with no evidence of an association thereafter. No associations were observed between urinary tAs and infant weight gain or change in weight-for-length and head circumference through one year. CONCLUSIONS: On average, infants exposed to higher in utero arsenic attained modestly longer length during the first year, despite having slower linear growth in the first 3.5 months of life. This suggests that the previously demonstrated arsenic-associated longer length among study infants at birth persists through the first year of life. No other anthropometric associations with in utero arsenic exposure were observed across the full study population.


Asunto(s)
Arsénico , Desarrollo Infantil , Efectos Tardíos de la Exposición Prenatal , Antropometría , Arsénico/toxicidad , Cesárea , Desarrollo Infantil/efectos de los fármacos , Estudios de Cohortes , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Exposición Materna , New Hampshire , Embarazo
10.
Ecotoxicology ; 28(8): 949-963, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31410744

RESUMEN

The bioaccumulation of the neurotoxin methylmercury (MeHg) in freshwater ecosystems is thought to be mediated by both water chemistry (e.g., dissolved organic carbon [DOC] and dissolved mercury [Hg]) and diet (e.g., trophic position and diet composition). Hg in small streams is of particular interest given their role as a link between terrestrial and aquatic processes. Terrestrial processes determine the quantity and quality of streamwater DOC, which in turn influence the quantity and bioavailability of dissolved MeHg. To better understand the effects of water chemistry and diet on Hg bioaccumulation in stream biota, we measured DOC and dissolved Hg in stream water and mercury concentration in three benthic invertebrate taxa and three fish species across up to 12 tributary streams in a forested watershed in New Hampshire, USA. As expected, dissolved total mercury (THg) and MeHg concentrations increased linearly with DOC. However, mercury concentrations in fish and invertebrates varied non-linearly, with maximum bioaccumulation at intermediate DOC concentrations, which suggests that MeHg bioavailability may be reduced at high levels of DOC. Further, MeHg and THg concentrations in invertebrates and fish, respectively, increased with δ15N (suggesting trophic position) but were not associated with δ13C. These results show that even though MeHg in water is strongly determined by DOC concentrations, mercury bioaccumulation in stream food webs is the result of both MeHg availability in stream water and trophic position.


Asunto(s)
Bioacumulación , Peces/metabolismo , Invertebrados/metabolismo , Mercurio/metabolismo , Compuestos de Metilmercurio/metabolismo , Ríos/química , Animales , Dieta , Cadena Alimentaria , Sustancias Húmicas/análisis , New Hampshire
11.
Ecotoxicol Environ Saf ; 182: 109440, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31336228

RESUMEN

Mercury, and particularly its organic form, methylmercury (MeHg), is a ubiquitous environmental contaminant with documented dosage-dependent adverse effects on endpoints spanning many levels of biological organization. However, relatively little is known about the sublethal impacts of environmentally-relevant exposures on behavioral characteristics that may impact predator-prey relationships, and thus the potential for Hg bioaccumulation within food webs due to behavioral impairments. This study investigated the potential for dietary mercury exposure to impair two behavioral outcomes in the highly invasive rusty crayfish, Faxonius rusticus, which are expected to influence interactions with their fish predators: the tail-flip escape response and chelae pinch strength. Field-caught animals were randomly assigned to four dietary treatments with mean (±1 SE) dry-weight total Hg (THg) concentrations of 3.52 ±â€¯0.57, 114.01 ±â€¯4.05, 274.10 ±â€¯0.38, and 565.79 ±â€¯1.33 ng/g in the control, low, moderate and high exposure treatments, respectively, for 16 weeks. After initial observations, exposures began and mass and behavior were measured every two weeks. At the end of the experiment, THg concentrations in tail muscle tissue were significantly higher in the high exposure treatment than in the control and low exposure treatments (Tukey's HSD, family-wise α = 0.05). Exposure-dependent declines in survival, mass, pinch strength, or tail-flip escape response velocity were not detected within the 12- to 16-week experimental exposure period, which represents one season of the crayfish's 3-4 year lifespan. This suggests that crayfish may be relatively tolerant of dietary exposure to sublethal concentrations of mercury within a single season. Further investigation of the physiological underpinnings of this tolerance is warranted.


Asunto(s)
Astacoidea/fisiología , Conducta Animal/efectos de los fármacos , Mercurio/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Cyprinidae , Dieta , Exposición Dietética , Exposición a Riesgos Ambientales , Peces , Cadena Alimentaria , Mercurio/análisis , Compuestos de Metilmercurio , Músculos/química , Alimentos Marinos
12.
Environ Int ; 121(Pt 2): 1289-1296, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30389381

RESUMEN

Growing evidence suggests that environmental exposures can influence blood pressure over the course of a lifetime. Exposure to toxic metals, such as lead (Pb) and arsenic (As), has been associated with increased blood pressure in adults, but few studies have examined the impacts of in utero and early life toxic metals exposure on blood pressure in childhood. As subclinical vascular changes are thought to begin early in life, it is possible that in utero toxic metals exposure may play a role in blood pressure homeostasis. In the ongoing New Hampshire Birth Cohort Study, we investigated whether in utero exposure to Pb and As was associated with measures of blood pressure in a total of 323 young children (mean age 5.5 years, SD 0.4). Pb and As were measured in maternal toenail samples collected at ~28 weeks gestation (n = 257) and/or 6 weeks postpartum (n = 285), which represent exposures ~6 to 12 months prior to collection and therefore reflect the early prenatal and late prenatal exposures, respectively. Five measurements of systolic blood pressure (SBP) and diastolic blood pressure (DBP) were averaged for each child using a standardized technique. In linear regression analyses, where log2-transformed prenatal toenail Pb and As were modeled jointly and adjusted for child age, sex, height, weight and maternal smoking during pregnancy, we observed that a doubling of maternal prenatal toenail Pb was associated with statistically significant increases in child SBP (ß: 0.58 mm Hg, 95% CI: 0.05, 1.11). We did not observe any association of prenatal or postpartum As, or postpartum Pb, with SBP or DBP. Exploratory sex-stratified analyses suggest that associations of prenatal Pb with BP may be stronger among boys (SBP ß: 0.72 mm Hg: 95% CI: -0.01, 1.44; DBP ß: 0.37; 95% CI: -0.09, 0.84), compared to girls (SBP ß: 0.48 mm Hg: 95% CI: -0.31, 1.26; DBP ß: -0.05; 95% CI: -0.52, 0.41), though tests for interaction did not reach statistical significance (p-interaction SBP = 0.059; DBP = 0.057). Our preliminary results suggest that in utero toxic metals exposures may be associated with early life increases in blood pressure in children, which could have consequences for long-term health.


Asunto(s)
Exposición a Riesgos Ambientales , Contaminantes Ambientales/efectos adversos , Hipertensión/epidemiología , Plomo/efectos adversos , Efectos Tardíos de la Exposición Prenatal/epidemiología , Adulto , Preescolar , Femenino , Humanos , Hipertensión/inducido químicamente , Masculino , New Hampshire/epidemiología , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Estudios Prospectivos
13.
Environ Health Perspect ; 126(8): 84503, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30235424

RESUMEN

The diet is emerging as the dominant source of arsenic exposure for most of the U.S. population. Despite this, limited regulatory efforts have been aimed at mitigating exposure, and the role of diet in arsenic exposure and disease processes remains understudied. In this brief, we discuss the evidence linking dietary arsenic intake to human disease and discuss challenges associated with exposure characterization and efforts to quantify risks. In light of these challenges, and in recognition of the potential longer-term process of establishing regulation, we introduce a framework for shorter-term interventions that employs a field-to-plate food supply chain model to identify monitoring, intervention, and communication opportunities as part of a multisector, multiagency, science-informed, public health systems approach to mitigation of dietary arsenic exposure. Such an approach is dependent on coordination across commodity producers, the food industry, nongovernmental organizations, health professionals, researchers, and the regulatory community. https://doi.org/10.1289/EHP3997.


Asunto(s)
Arsénico/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Contaminantes Ambientales/efectos adversos , Dieta/efectos adversos , Contaminación de Alimentos/análisis , Humanos , Medición de Riesgo
14.
Sci Rep ; 8(1): 12627, 2018 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-30135504

RESUMEN

Arsenic is a ubiquitous environmental toxicant with antimicrobial properties that can be found in food and drinking water. The influence of arsenic exposure on the composition of the human microbiome in US populations remains unknown, particularly during the vulnerable infant period. We investigated the relationship between arsenic exposure and gut microbiome composition in 204 infants prospectively followed as part of the New Hampshire Birth Cohort Study. Infant urine was analyzed for total arsenic concentration using inductively coupled plasma mass spectrometry. Stool microbiome composition was determined using sequencing of the bacterial 16S rRNA gene. Infant urinary arsenic related to gut microbiome composition at 6 weeks of life (p = 0.05, adjusted for infant feeding type and urine specific gravity). Eight genera, six within the phylum Firmicutes, were enriched with higher arsenic exposure. Fifteen genera were negatively associated with urinary arsenic concentration, including Bacteroides and Bifidobacterium. Upon stratification by both sex and feeding method, we found detectable associations among formula-fed males (p = 0.008), but not other groups (p > 0.05 for formula-fed females and for breastfed males and females). Our findings from a US population indicate that even moderate arsenic exposure may have meaningful, sex-specific effects on the gut microbiome during a critical window of infant development.


Asunto(s)
Arsénico/efectos adversos , Microbioma Gastrointestinal/efectos de los fármacos , Arsénico/análisis , Arsénico/orina , Bacterias/genética , Lactancia Materna , Estudios de Cohortes , Heces/microbiología , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Microbiota , Estudios Prospectivos , ARN Ribosómico 16S/genética , Factores Sexuales , Estados Unidos/epidemiología
15.
PLoS One ; 13(7): e0201383, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30048543

RESUMEN

Vibrio cholerae O1, the etiological agent of cholera, is a natural inhabitant of aquatic ecosystems. Motility is a critical element for the colonization of both the human host and its environmental reservoirs. In this study, we investigated the molecular mechanisms underlying the chemotactic response of V. cholerae in the presence of some of its environmental reservoirs. We found that, from the several oligosaccharides found in mucin, two specifically triggered motility of V. cholerae O1: N-acetylneuraminic acid (Neu5Ac) and N-acetylglucosamine (GlcNAc). We determined that the compounds need to be internally catabolized in order to trigger motility of V. cholerae. Interestingly, the catabolism of Neu5Ac and GlcNAc converges and the production of one molecule common to both pathways, glucosamine-6-phosphate (GlcN-6P), is essential to induce motility in the presence of both compounds. Mutants unable to produce GlcN-6P show greatly reduced motility towards mucin. Furthermore, we determined that the production of GlcN-6P is necessary to induce motility of V. cholerae in the presence of some of its environmental reservoirs such as crustaceans or cyanobacteria, revealing a molecular link between the two distinct modes of the complex life cycle of V. cholerae. Finally, cross-species comparisons revealed varied chemotactic responses towards mucin, GlcNAc, and Neu5Ac for environmental (non-pathogenic) strains of V. cholerae, clinical and environmental isolates of the human pathogens Vibrio vulnificus and Vibrio parahaemolyticus, and fish and squid isolates of the symbiotic bacterium Vibrio fischeri. The data presented here suggest nuance in convergent strategies across species of the same bacterial family for motility towards suitable substrates for colonization.


Asunto(s)
Acetilglucosamina/metabolismo , Cólera/microbiología , Moco/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Vibrio cholerae/fisiología , Animales , Quimiotaxis , Cólera/metabolismo , Crustáceos/metabolismo , Cianobacterias/metabolismo , Interacciones Huésped-Patógeno , Humanos , Redes y Vías Metabólicas , Vibrio cholerae/citología , Vibrio cholerae/aislamiento & purificación , Vibrio cholerae O1/metabolismo
16.
Sci Rep ; 8(1): 7114, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29739998

RESUMEN

Early-life exposure to inorganic arsenic (i-As) may cause long-lasting health effects, but as yet, little is known about exposure among weaning infants. We assessed exposure before and during weaning and investigated the association between solid food intake and infants' urinary arsenic species concentrations. Following the recording of a comprehensive 3 day food diary, paired urine samples (pre- and post-weaning) were collected and analyzed for arsenic speciation from 15 infants participating in the New Hampshire Birth Cohort Study. Infants had higher urinary i-As (p-value = 0.04), monomethylarsonic acid (MMA) (p-value = 0.002), dimethylarsinic acid (DMA) (p-value = 0.01), and sum of arsenic species (i-As + MMA + DMA, p-value = 0.01) during weaning than while exclusively fed on a liquid diet (i.e., breast milk, formula, or a mixture of both). Among weaning infants, increased sum of urinary arsenic species was pairwise-associated with intake of rice cereal (Spearman's ρ = 0.90, p-value = 0.03), fruit (ρ = 0.70, p-value = 0.03), and vegetables (ρ = 0.86, p-value = 0.01). Our observed increases in urinary arsenic concentrations likely indicate increased exposure to i-As during the transition to solid foods, suggests the need to minimize exposure during this critical period of development.


Asunto(s)
Arsénico/orina , Exposición a Riesgos Ambientales , Alimentos/efectos adversos , Destete , Arsénico/efectos adversos , Arsénico/química , Intoxicación por Arsénico/epidemiología , Arsenicales/química , Arsenicales/orina , Ácido Cacodílico/química , Ácido Cacodílico/orina , Femenino , Humanos , Lactante , Leche Humana/química , Oryza/efectos adversos , Oryza/química
17.
Sci Total Environ ; 579: 1228-1239, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27914647

RESUMEN

Inorganic arsenic (iAs) is ubiquitous in the environment as arsenite (AsIII) and arsenate (AsV) compounds and biotransformation of these toxic chemicals leads to the extraordinary variety of organoarsenic species found in nature. Despite classification as a human carcinogen based on data from populations exposed through contaminated drinking water, only recently has a need for regulatory limits on iAs in food been recognized. The delay was due to the difficulty in risk assessment of dietary iAs, which critically relies on speciation analysis providing occurrence data for iAs in food - and not simply for total arsenic. In the present review the state of knowledge regarding arsenic speciation in food and diet is evaluated with focus on iAs and human exposure assessment through different dietary approaches including duplicate diet studies, market basket surveys, and total diet studies. The analytical requirements for obtaining reliable data for iAs in food are discussed and iAs levels in foods and beverages are summarized, along with information on other (potentially) toxic co-occurring organoarsenic compounds. Quantitative exposure assessment of iAs in food is addressed, focusing on the need of capturing variability and extent of exposure and identifying what dietary items drive very high exposure for certain population groups. Finally, gaps and uncertainties are discussed, including effect of processing and cooking, and iAs bioavailability.


Asunto(s)
Dieta/estadística & datos numéricos , Exposición Dietética/estadística & datos numéricos , Contaminantes Ambientales/análisis , Contaminación Ambiental/estadística & datos numéricos , Arsénico/análisis , Contaminación de Alimentos/estadística & datos numéricos , Humanos , Medición de Riesgo
18.
Ecol Appl ; 26(6): 1771-1784, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27755696

RESUMEN

Mercury (Hg) concentrations in aquatic environments have increased globally, exposing consumers of aquatic organisms to high Hg levels. For both aquatic and terrestrial consumers, exposure to Hg depends on their food sources as well as environmental factors influencing Hg bioavailability. The majority of the research on the transfer of methylmercury (MeHg), a toxic and bioaccumulating form of Hg, between aquatic and terrestrial food webs has focused on terrestrial piscivores. However, a gap exists in our understanding of the factors regulating MeHg bioaccumulation by non-piscivorous terrestrial predators, specifically consumers of adult aquatic insects. Because dissolved organic carbon (DOC) binds tightly to MeHg, affecting its transport and availability in aquatic food webs, we hypothesized that DOC affects MeHg transfer from stream food webs to terrestrial predators feeding on emerging adult insects. We tested this hypothesis by collecting data over 2 years from 10 low-order streams spanning a broad DOC gradient in the Lake Sunapee watershed in New Hampshire, USA. We found that streamwater MeHg concentration increased linearly with DOC concentration. However, streams with the highest DOC concentrations had emerging stream prey and spiders with lower MeHg concentrations than streams with intermediate DOC concentrations; a pattern that is similar to fish and larval aquatic insects. Furthermore, high MeHg concentrations found in spiders show that MeHg transfer in adult aquatic insects is an overlooked but potentially significant pathway of MeHg bioaccumulation in terrestrial food webs. Our results suggest that although MeHg in water increases with DOC, MeHg concentrations in stream and terrestrial consumers did not consistently increase with increases in streamwater MeHg concentrations. In fact, there was a change from a positive to a negative relationship between aqueous exposure and bioaccumulation at streamwater MeHg concentrations associated with DOC above ~5 mg/L. Thus, our study highlights the importance of stream DOC for MeHg dynamics beyond stream boundaries, and shows that factors modulating MeHg bioavailability in aquatic systems can affect the transfer of MeHg to terrestrial predators via aquatic subsidies.


Asunto(s)
Carbono/química , Insectos/fisiología , Mercurio/química , Ríos/química , Animales , Concentración de Iones de Hidrógeno , Insectos/química , Arañas/química , Arañas/fisiología , Temperatura
19.
Toxins (Basel) ; 8(9)2016 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-27589801

RESUMEN

Cyanobacteria and their toxins have received significant attention in eutrophic temperate and tropical systems where conspicuous blooms of certain planktonic taxa release toxins into fresh water, threatening its potability and safe use for recreation. Although toxigenic cyanobacteria are not confined to high nutrient environments, bloom-forming species, or planktonic taxa, these other situations are studied les often studied. For example, toxin production in picoplankton and benthic cyanobacteria-the predominant photoautotrophs found in polar lakes-is poorly understood. We quantified the occurrence of microcystin (MC, a hepatotoxic cyanotoxin) across 18 Arctic lakes in southwestern Greenland. All of the focal lakes contained detectable levels of MC, with concentrations ranging from 5 ng·L(-1) to >400 ng·L(-1) during summer, 2013-2015. These concentrations are orders of magnitude lower than many eutrophic systems, yet the median lake MC concentration in Greenland (57 ng·L(-1)) was still 6.5 times higher than the median summer MC toxicity observed across 50 New Hampshire lakes between 1998 and 2008 (8.7 ng·L(-1)). The presence of cyanotoxins in these Greenlandic lakes demonstrates that high latitude lakes can support toxigenic cyanobacteria, and suggests that we may be underestimating the potential for these systems to develop high levels of cyanotoxins in the future.


Asunto(s)
Cianobacterias/aislamiento & purificación , Lagos/química , Lagos/microbiología , Microcistinas/análisis , Toxinas Bacterianas/análisis , Monitoreo del Ambiente , Groenlandia , New Hampshire , Estaciones del Año , Microbiología del Agua
20.
Ann Glob Health ; 82(1): 221-4, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27325082

RESUMEN

BACKGROUND: Rice is known to be high in arsenic, including in infant rice cereal. Although arsenic in drinking water is currently regulated, there are currently no US regulations regarding arsenic concentrations in food. OBJECTIVE: We used published values to estimate arsenic exposure via rice cereal relative to breast milk or formula for 6- to 12-month-old infants in the general US population. RESULTS: We found that arsenic exposure from 3 servings of rice cereal exceeded that of formula made with water containing arsenic at 10 µg/L, the US Environmental Protection Agency maximum contaminant level. CONCLUSIONS: Our findings suggest that rice cereal can markedly increase arsenic exposure among US infants relative to breast milk and formula.


Asunto(s)
Arsénico , Grano Comestible , Exposición a Riesgos Ambientales , Contaminación de Alimentos , Alimentos Infantiles , Oryza , Animales , Femenino , Humanos , Lactante , Leche Humana , Medición de Riesgo , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA