Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Curr Genet ; 70(1): 17, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39276214

RESUMEN

Two-component systems (TCSs) are diverse cell signaling pathways that play a significant role in coping with a wide range of environmental cues in both prokaryotic and eukaryotic organisms. These transduction circuitries are primarily governed by histidine kinases (HKs), which act as sensing proteins of a broad variety of stressors. To date, nineteen HK groups have been previously described in the fungal kingdom. However, the structure and distribution of these prominent sensing proteins were hitherto investigated in a limited number of fungal species. In this study, we took advantage of recent genomic resources in fungi to refine the fungal HK classification by deciphering the structural diversity and phylogenetic distribution of HKs across a large number of fungal clades. To this end, we browsed the genome of 91 species representative of different fungal clades, which yielded 726 predicted HK sequences. A domain organization analysis, coupled with a robust phylogenomic approach, led to an improved categorization of fungal HKs. While most of the compiled sequences were categorized into previously described fungal HK groups, some new groups were also defined. Overall, this study provides an improved overview of the structure, distribution, and evolution of HKs in the fungal kingdom.


Asunto(s)
Hongos , Histidina Quinasa , Filogenia , Histidina Quinasa/genética , Histidina Quinasa/metabolismo , Histidina Quinasa/química , Hongos/genética , Hongos/enzimología , Hongos/clasificación , Genoma Fúngico , Transducción de Señal , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Evolución Molecular , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Quinasas/química
2.
Curr Biol ; 34(16): R791-R793, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39163844

RESUMEN

Our knowledge of the biosynthesis of medicinal compounds from plants remains limited. A new study has deciphered the complete metabolic pathway leading to the biosynthesis of the psychedelic mescaline in the cactus peyote, suggesting the development of biotechnological strategies for a sustainable supply of this important plant drug.


Asunto(s)
Mescalina , Mescalina/metabolismo , Cactaceae/metabolismo , Alucinógenos/metabolismo
3.
Curr Opin Biotechnol ; 87: 103135, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38728826

RESUMEN

Plant bioactives hold immense potential in the medicine and food industry. The recent advancements in omics applied in deciphering specialized metabolic pathways underscore the importance of high-quality genome releases and the wealth of data in metabolomics and transcriptomics. While harnessing data, whether integrated or standalone, has proven successful in unveiling plant natural product (PNP) biosynthetic pathways, the democratization of machine learning in biology opens exciting new opportunities for enhancing the exploration of these pathways. This review highlights the recent breakthroughs in disrupting plant-specialized biosynthetic pathways through the utilization of omics data harnessing and machine learning techniques.


Asunto(s)
Aprendizaje Automático , Metabolómica , Plantas , Plantas/metabolismo , Plantas/genética , Metabolómica/métodos , Productos Biológicos/metabolismo , Vías Biosintéticas/genética , Genómica/métodos
5.
ACS Synth Biol ; 13(5): 1498-1512, 2024 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-38635307

RESUMEN

Monoterpene indole alkaloids (MIAs) make up a highly bioactive class of metabolites produced by a range of tropical and subtropical plants. The corynanthe-type MIAs are a stereochemically complex subclass with therapeutic potential against a large number of indications including cancer, psychotic disorders, and erectile dysfunction. Here, we report yeast-based cell factories capable of de novo production of corynanthe-type MIAs rauwolscine, yohimbine, tetrahydroalstonine, and corynanthine. From this, we demonstrate regioselective biosynthesis of 4 fluorinated derivatives of these compounds and de novo biosynthesis of 7-chlororauwolscine by coexpression of a halogenase with the biosynthetic pathway. Finally, we capitalize on the ability of these cell factories to produce derivatives of these bioactive scaffolds to establish a proof-of-principle drug discovery pipeline in which the corynanthe-type MIAs are screened for bioactivity on human drug targets, expressed in yeast. In doing so, we identify antagonistic and agonistic behavior against the human adrenergic G protein-coupled receptors ADRA2A and ADRA2B, and the serotonergic receptor 5HT4b, respectively. This study thus demonstrates a proto-drug discovery pipeline for bioactive plant-inspired small molecules based on one-pot biocatalysis of natural and new-to-nature corynanthe-type MIAs in yeast.


Asunto(s)
Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Humanos , Vías Biosintéticas , Yohimbina/metabolismo , Yohimbina/farmacología , Alcaloides de Triptamina Secologanina/metabolismo , Alcaloides Indólicos/metabolismo , Descubrimiento de Drogas/métodos
7.
Heliyon ; 10(6): e28078, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38533072

RESUMEN

Specialized metabolites possess diverse interesting biological activities and some cardenolides- and monoterpene indole alkaloids- (MIAs) derived pharmaceuticals are currently used to treat human diseases such as cancers or hypertension. While these two families of biocompounds are produced by specific subfamilies of Apocynaceae, one member of this medicinal plant family, the succulent tree Pachypodium lamerei Drake (also known as Madagascar palm), does not produce such specialized metabolites. To explore the evolutionary paths that have led to the emergence and loss of cardenolide and MIA biosynthesis in Apocynaceae, we sequenced and assembled the P. lamerei genome by combining Oxford Nanopore Technologies long-reads and Illumina short-reads. Phylogenomics revealed that, among the Apocynaceae whose genomes have been sequenced, the Madagascar palm is so far the species closest to the common ancestor between MIA producers/non-MIA producers. Transposable elements, constituting 72.48% of the genome, emerge as potential key players in shaping genomic architecture and influencing specialized metabolic pathways. The absence of crucial MIA biosynthetic genes such as strictosidine synthase in P. lamerei and non-Rauvolfioideae species hints at a transposon-mediated mechanism behind gene loss. Phylogenetic analysis not only showcases the evolutionary divergence of specialized metabolite biosynthesis within Apocynaceae but also underscores the role of transposable elements in this intricate process. Moreover, we shed light on the low conservation of enzymes involved in the final stages of MIA biosynthesis in the distinct MIA-producing plant families, inferring independent gains of these specialized enzymes along the evolution of these medicinal plant clades. Overall, this study marks a leap forward in understanding the genomic dynamics underpinning the evolution of specialized metabolites biosynthesis in the Apocynaceae family, with transposons emerging as potential architects of genomics restructuring and gene loss.

8.
Plant Physiol ; 195(3): 2213-2233, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38466200

RESUMEN

Rho of Plant (ROP) GTPases function as molecular switches that control signaling processes essential for growth, development, and defense. However, their role in specialized metabolism is poorly understood. Previously, we demonstrated that inhibition of protein geranylgeranyl transferase (PGGT-I) negatively impacts the biosynthesis of monoterpene indole alkaloids (MIA) in Madagascar periwinkle (Catharanthus roseus), indicating the involvement of prenylated proteins in signaling. Here, we show through biochemical, molecular, and in planta approaches that specific geranylgeranylated ROPs modulate C. roseus MIA biosynthesis. Among the six C. roseus ROP GTPases (CrROPs), only CrROP3 and CrROP5, having a C-terminal CSIL motif, were specifically prenylated by PGGT-I. Additionally, their transcripts showed higher expression in most parts than other CrROPs. Protein-protein interaction studies revealed that CrROP3 and CrROP5, but not ΔCrROP3, ΔCrROP5, and CrROP2 lacking the CSIL motif, interacted with CrPGGT-I. Further, CrROP3 and CrROP5 exhibited nuclear localization, whereas CrROP2 was localized to the plasma membrane. In planta functional studies revealed that silencing of CrROP3 and CrROP5 negatively affected MIA biosynthesis, while their overexpression upregulated MIA formation. In contrast, silencing and overexpression of CrROP2 had no effect on MIA biosynthesis. Moreover, overexpression of ΔCrROP3 and ΔCrROP5 mutants devoid of sequence coding for the CSIL motif failed to enhance MIA biosynthesis. These results implicate that CrROP3 and CrROP5 have a positive regulatory role on MIA biosynthesis and thus shed light on how geranylgeranylated ROP GTPases mediate the modulation of specialized metabolism in C. roseus.


Asunto(s)
Catharanthus , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Catharanthus/genética , Catharanthus/metabolismo , Catharanthus/enzimología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Prenilación de Proteína , Secuencias de Aminoácidos , Alcaloides/metabolismo , Alcaloides/biosíntesis
10.
Curr Opin Biotechnol ; 87: 103098, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38452572

RESUMEN

Natural products represent an inestimable source of valuable compounds for human health. Notably, those produced by plants remain challenging to access due to their low production. Potential shortages of plant-derived biopharmaceuticals caused by climate change or pandemics also regularly tense the market trends. Thus, biotechnological alternatives of supply based on synthetic biology have emerged. These innovative strategies mostly rely on the use of engineered microbial systems for compound synthesis. In this regard, yeasts remain the easiest-tractable eukaryotic models and a convenient chassis for reconstructing whole biosynthetic routes for the heterologous production of plant-derived metabolites. Here, we highlight the recent discoveries dedicated to the bioproduction of new-to-nature compounds in yeasts and provide an overview of emerging strategies for optimising bioproduction.


Asunto(s)
Productos Biológicos , Productos Biológicos/metabolismo , Plantas/metabolismo , Biotecnología/métodos , Biología Sintética , Levaduras/metabolismo , Ingeniería Metabólica/métodos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Humanos
14.
Nat Chem Biol ; 19(12): 1551-1560, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37932529

RESUMEN

Monoterpenoid indole alkaloids (MIAs) represent a large class of plant natural products with marketed pharmaceutical activities against a wide range of indications, including cancer, malaria and hypertension. Halogenated MIAs have shown improved pharmaceutical properties; however, synthesis of new-to-nature halogenated MIAs remains a challenge. Here we demonstrate a platform for de novo biosynthesis of two MIAs, serpentine and alstonine, in baker's yeast Saccharomyces cerevisiae and deploy it to systematically explore the biocatalytic potential of refactored MIA pathways for the production of halogenated MIAs. From this, we demonstrate conversion of individual haloindole derivatives to a total of 19 different new-to-nature haloserpentine and haloalstonine analogs. Furthermore, by process optimization and heterologous expression of a modified halogenase in the microbial MIA platform, we document de novo halogenation and biosynthesis of chloroalstonine. Together, this study highlights a microbial platform for enzymatic exploration and production of complex natural and new-to-nature MIAs with therapeutic potential.


Asunto(s)
Catharanthus , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Monoterpenos/metabolismo , Alcaloides Indólicos/metabolismo , Plantas/metabolismo , Preparaciones Farmacéuticas/metabolismo , Proteínas de Plantas/metabolismo
15.
Commun Biol ; 6(1): 1197, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001233

RESUMEN

Monoterpene indole alkaloids (MIAs) are a structurally diverse family of specialized metabolites mainly produced in Gentianales to cope with environmental challenges. Due to their pharmacological properties, the biosynthetic modalities of several MIA types have been elucidated but not that of the yohimbanes. Here, we combine metabolomics, proteomics, transcriptomics and genome sequencing of Rauvolfia tetraphylla with machine learning to discover the unexpected multiple actors of this natural product synthesis. We identify a medium chain dehydrogenase/reductase (MDR) that produces a mixture of four diastereomers of yohimbanes including the well-known yohimbine and rauwolscine. In addition to this multifunctional yohimbane synthase (YOS), an MDR synthesizing mainly heteroyohimbanes and the short chain dehydrogenase vitrosamine synthase also display a yohimbane synthase side activity. Lastly, we establish that the combination of geissoschizine synthase with at least three other MDRs also produces a yohimbane mixture thus shedding light on the complex mechanisms evolved for the synthesis of these plant bioactives.


Asunto(s)
Rauwolfia , Rauwolfia/genética , Rauwolfia/metabolismo , Monoterpenos , Alcaloides Indólicos/metabolismo
16.
Trends Plant Sci ; 28(11): 1205-1207, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37625948

RESUMEN

Elucidating biosynthetic pathways of plant specialized metabolites is a tricky but essential task for the biotechnological production of plant drugs. In a new report, Li et al. used a single-cell multi-omics approach to provide an integrative view of the architecture and regulation of anticancer alkaloid routes in Madagascar periwinkle.

17.
Molecules ; 28(11)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37299031

RESUMEN

The composition of bioactive polyphenols from grape canes, an important viticultural byproduct, was shown to be varietal-dependent; however, the influence of soil-related terroir factors remains unexplored. Using spatial metabolomics and correlation-based networks, we investigated how continuous changes in soil features and topography may impact the polyphenol composition in grape canes. Soil properties, topography, and grape cane extracts were analyzed at georeferenced points over 3 consecutive years, followed by UPLC-DAD-MS-based metabolomic analysis targeting 42 metabolites. Principal component analyses on intra-vintage metabolomic data presented a good reproducibility in relation to geographic coordinates. A correlation-driven approach was used to explore the combined influence of soil and topographic variables on metabolomic responses. As a result, a metabolic cluster including flavonoids was correlated with elevation and curvature. Spatial metabolomics driven by correlation-based networks represents a powerful approach to spatialize field-omics data and may serve as new field-phenotyping tool in precision agriculture.


Asunto(s)
Vitis , Vitis/metabolismo , Polifenoles/metabolismo , Reproducibilidad de los Resultados , Metabolómica , Suelo
18.
Chembiochem ; 24(18): e202300234, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37249120

RESUMEN

Cocaine and hyoscyamine are two tropane alkaloids (TA) from Erythroxylaceae and Solanaceae, respectively. These famous compounds possess anticholinergic properties that can be used to treat neuromuscular disorders. While the hyoscyamine biosynthetic pathway has been fully elucidated allowing its de novo synthesis in yeast, the cocaine pathway remained only partially elucidated. Recently, the Huang research group has completed the cocaine biosynthetic route by characterizing its two missing enzymes. This allowed the whole pathway to be transferring into Nicotiana benthamiana to achieve cocaine production. Here, besides highlighting the impact of this discovery, we discuss how TA biosynthesis evolved via the recruitment of two distinct and convergent pathways in Erythroxylaceae and Solanaceae. Finally, while enriching our knowledge on TA biosynthesis, this diversification of the molecular actors involved in cocaine and hyoscyamine biosynthesis opens perspectives in metabolic engineering by exploring enzyme biochemical plasticity that can ease and shorten TA pathway reconstitution in heterologous organisms.


Asunto(s)
Cocaína , Hiosciamina , Solanaceae , Cocaína/metabolismo , Tropanos/química , Tropanos/metabolismo , Solanaceae/metabolismo , Antagonistas Colinérgicos/metabolismo
19.
Synth Syst Biotechnol ; 8(2): 224-226, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36936387

RESUMEN

Synthetic biology is constantly making progress for producing compounds on demand. Recently, Yocum and collaborators have developed an outstanding approach based on the anchoring of biosynthetic enzymes to the peroxisomal membrane. This allowed access to an untapped resource of acetyl-CoA and stimulated the synthesis of a valuable polyketide.

20.
Phytochemistry ; 209: 113620, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36863602

RESUMEN

Monoterpenoid indole alkaloids (MIAs) are a large group of biosynthetic compounds, which have pharmacological properties. One of these MIAs, reserpine, was discovered in the 1950s and has shown properties as an anti-hypertension and anti-microbial agent. Reserpine was found to be produced in various plant species within the genus of Rauvolfia. However, even though its presence is well known, it is still unknown in which tissues Rauvolfia produce reserpine and where the individual steps in the biosynthetic pathway take place. In this study, we explore how matrix assisted laser desorption ionization (MALDI) and desorption electrospray ionization (DESI) mass spectrometry imaging (MSI) can be used in the investigation of a proposed biosynthetic pathway by localizing reserpine and the theoretical intermediates of it. The results show that ions corresponding to intermediates of reserpine were localized in several of the major parts of Rauvolfia tetraphylla when analyzed by MALDI- and DESI-MSI. In stem tissue, reserpine and many of the intermediates were found compartmentalized in the xylem. For most samples, reserpine itself was mainly found in the outer layers of the sample, suggesting it may function as a defense compound. To further confirm the place of the different metabolites in the reserpine biosynthetic pathway, roots and leaves of R. tetraphylla were fed a stable-isotope labelled version of the precursor tryptamine. Subsequently, several of the proposed intermediates were detected in the normal version as well as in the isotope labelled versions, confirming that they were synthesized in planta from tryptamine. In this experiment, a potential novel dimeric MIA was discovered in leaf tissue of R. tetraphylla. The study constitutes to date the most comprehensive spatial mapping of metabolites in the R. tetraphylla plant. In addition, the article also contains new illustrations of the anatomy of R. tetraphylla.


Asunto(s)
Rauwolfia , Alcaloides de Triptamina Secologanina , Alcaloides de Triptamina Secologanina/química , Rauwolfia/metabolismo , Reserpina/química , Reserpina/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Triptaminas/metabolismo , Antihipertensivos , Alcaloides Indólicos/metabolismo , Espectrometría de Masa por Ionización de Electrospray/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA