Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
1.
Front Oncol ; 14: 1411474, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39351356

RESUMEN

We present two cases of cardiac metastases adjacent to the right ventricle in a 55-year-old male and a 61-year-old female, both treated with magnetic resonance (MR)-guided adaptive stereotactic radiation therapy (SBRT). The prescribed regimen was 30Gy delivered in 3 fractions using a 1.5 Tesla magnetic resonance linear accelerator (MR-linac). Patients exhibited favorable tolerance to the treatment, with no observed acute toxicity.

2.
Phys Imaging Radiat Oncol ; 31: 100637, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39297080

RESUMEN

Background and purpose: In many clinics, positron-emission tomography is unavailable and clinician time extremely limited. Here we describe a deep-learning model for autocontouring gross disease for patients undergoing palliative radiotherapy for primary lung lesions and/or hilar/mediastinal nodal disease, based only on computed tomography (CT) images. Materials and methods: An autocontouring model (nnU-Net) was trained to contour gross disease in 379 cases (352 training, 27 test); 11 further test cases from an external centre were also included. Anchor-point-based post-processing was applied to remove extraneous autocontoured regions. The autocontours were evaluated quantitatively in terms of volume similarity (Dice similarity coefficient [DSC], surface Dice coefficient, 95th percentile Hausdorff distance [HD95], and mean surface distance), and scored for usability by two consultant oncologists. The magnitude of treatment margin needed to account for geometric discrepancies was also assessed. Results: The anchor point process successfully removed all erroneous regions from the autocontoured disease, and identified two cases to be excluded from further analysis due to 'missed' disease. The average DSC and HD95 were 0.8 ± 0.1 and 10.5 ± 7.3 mm, respectively. A 10-mm uniform margin-distance applied to the autocontoured region was found to yield "full coverage" (sensitivity > 0.99) of the clinical contour for 64 % of cases. Ninety-seven percent of evaluated autocontours were scored by both clinicians as requiring no or minor edits. Conclusions: Our autocontouring model was shown to produce clinically usable disease outlines, based on CT alone, for approximately two-thirds of patients undergoing lung radiotherapy. Further work is necessary to improve this before clinical implementation.

3.
Phys Med Biol ; 69(19)2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39241803

RESUMEN

Objective. Previous methods for robustness evaluation rely on dose calculation for a number of uncertainty scenarios, which either fails to provide statistical meaning when the number is too small (e.g., ∼8) or becomes unfeasible in daily clinical practice when the number is sufficiently large (e.g., >100). Our proposed deep learning (DL)-based method addressed this issue by avoiding the intermediate dose calculation step and instead directly predicting the percentile dose distribution from the nominal dose distribution using a DL model. In this study, we sought to validate this DL-based statistical robustness evaluation method for efficient and accurate robustness quantification in head and neck (H&N) intensity-modulated proton therapy with diverse beam configurations and multifield optimization.Approach. A dense, dilated 3D U-net was trained to predict the 5th and 95th percentile dose distributions of uncertainty scenarios using the nominal dose and planning CT images. The data set comprised proton therapy plans for 582 H&N cancer patients. Ground truth percentile values were estimated for each patient through 600 dose recalculations, representing randomly sampled uncertainty scenarios. The comprehensive comparisons of different models were conducted for H&N cancer patients, considering those with and without a beam mask and diverse beam configurations, including varying beam angles, couch angles, and beam numbers. The performance of our model trained based on a mixture of patients with H&N and prostate cancer was also assessed in contrast with models trained based on data specific for patients with cancer at either site.Results. The DL-based model's predictions of percentile dose distributions exhibited excellent agreement with the ground truth dose distributions. The average gamma index with 2 mm/2%, consistently exceeded 97% for both 5th and 95th percentile dose volumes. Mean dose-volume histogram error analysis revealed that predictions from the combined training set yielded mean errors and standard deviations that were generally similar to those in the specific patient training data sets.Significance. Our proposed DL-based method for evaluation of the robustness of proton therapy plans provides precise, rapid predictions of percentile dose for a given confidence level regardless of the beam arrangement and cancer site. This versatility positions our model as a valuable tool for evaluating the robustness of proton therapy across various cancer sites.


Asunto(s)
Aprendizaje Profundo , Neoplasias de Cabeza y Cuello , Terapia de Protones , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Neoplasias de Cabeza y Cuello/radioterapia , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Terapia de Protones/métodos , Humanos , Radioterapia de Intensidad Modulada/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Dosificación Radioterapéutica , Incertidumbre
4.
Semin Radiat Oncol ; 34(4): 477-493, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39271284

RESUMEN

There has long existed a substantial disparity in access to radiotherapy globally. This issue has only been exacerbated as the growing disparity of cancer incidence between high-income countries (HIC) and low and middle-income countries (LMICs) widens, with a pronounced increase in cancer cases in LMICs. Even within HICs, iniquities within local communities may lead to a lack of access to care. Due to these trends, it is imperative to find solutions to narrow global disparities. This requires the engagement of a diverse cohort of stakeholders, including working professionals, non-governmental organizations, nonprofits, professional societies, academic and training institutions, and industry. This review brings together a diverse group of experts to highlight critical areas that could help reduce the current global disparities in radiation oncology. Advancements in technology and treatment, such as artificial intelligence, brachytherapy, hypofractionation, and digital networks, in combination with implementation science and novel funding mechanisms, offer means for increasing access to care and education globally. Common themes across sections reveal how utilizing these new innovations and strengthening collaborative efforts among stakeholders can help improve access to care globally while setting the framework for the next generation of innovations.


Asunto(s)
Accesibilidad a los Servicios de Salud , Neoplasias , Oncología por Radiación , Humanos , Neoplasias/radioterapia , Salud Global , Países en Desarrollo , Disparidades en Atención de Salud , Necesidades y Demandas de Servicios de Salud
5.
Diagnostics (Basel) ; 14(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39125508

RESUMEN

This study aimed to determine the relationship between geometric and dosimetric agreement metrics in head and neck (H&N) cancer radiotherapy plans. A total 287 plans were retrospectively analyzed, comparing auto-contoured and clinically used contours using a Dice similarity coefficient (DSC), surface DSC (sDSC), and Hausdorff distance (HD). Organs-at-risk (OARs) with ≥200 cGy dose differences from the clinical contour in terms of Dmax (D0.01cc) and Dmean were further examined against proximity to the planning target volume (PTV). A secondary set of 91 plans from multiple institutions validated these findings. For 4995 contour pairs across 19 OARs, 90% had a DSC, sDSC, and HD of at least 0.75, 0.86, and less than 7.65 mm, respectively. Dosimetrically, the absolute difference between the two contour sets was <200 cGy for 95% of OARs in terms of Dmax and 96% in terms of Dmean. In total, 97% of OARs exhibiting significant dose differences between the clinically edited contour and auto-contour were within 2.5 cm PTV regardless of geometric agreement. There was an approximately linear trend between geometric agreement and identifying at least 200 cGy dose differences, with higher geometric agreement corresponding to a lower fraction of cases being identified. Analysis of the secondary dataset validated these findings. Geometric indices are approximate indicators of contour quality and identify contours exhibiting significant dosimetric discordance. For a small subset of OARs within 2.5 cm of the PTV, geometric agreement metrics can be misleading in terms of contour quality.

6.
J Appl Clin Med Phys ; : e14474, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39074490

RESUMEN

BACKGROUND: The delineation of clinical target volumes (CTVs) for radiotherapy for nasopharyngeal cancer is complex and varies based on the location and extent of disease. PURPOSE: The current study aimed to develop an auto-contouring solution following one protocol guidelines (NRG-HN001) that can be adjusted to meet other guidelines, such as RTOG-0225 and the 2018 International guidelines. METHODS: The study used 2-channel 3-dimensional U-Net and nnU-Net framework to auto-contour 27 normal structures in the head and neck (H&N) region that are used to define CTVs in the protocol. To define the CTV-Expansion (CTV1 and CTV2) and CTV-Overall (the outer envelope of all the CTV contours), we used adjustable morphological geometric landmarks and mimicked physician interpretation of the protocol rules by partially or fully including select anatomic structures. The results were evaluated quantitatively using the dice similarity coefficient (DSC) and mean surface distance (MSD) and qualitatively by independent reviews by two H&N radiation oncologists. RESULTS: The auto-contouring tool showed high accuracy for nasopharyngeal CTVs. Comparison between auto-contours and clinical contours for 19 patients with cancers of various stages showed a DSC of 0.94 ± 0.02 and MSD of 0.4 ± 0.4 mm for CTV-Expansion and a DSC of 0.83 ± 0.02 and MSD of 2.4 ± 0.5 mm for CTV-Overall. Upon independent review, two H&N physicians found the auto-contours to be usable without edits in 85% and 75% of cases. In 15% of cases, minor edits were required by both physicians. Thus, one physician rated 100% of the auto-contours as usable (use as is, or after minor edits), while the other physician rated 90% as usable. The second physician required major edits in 10% of cases. CONCLUSIONS: The study demonstrates the ability of an auto-contouring tool to reliably delineate nasopharyngeal CTVs based on protocol guidelines. The tool was found to be clinically acceptable by two H&N radiation oncology physicians in at least 90% of the cases.

7.
Adv Radiat Oncol ; 9(8): 101533, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38993196

RESUMEN

Purpose: Our purpose was to develop a clinically intuitive and easily understandable scoring method using statistical metrics to visually determine the quality of a radiation treatment plan. Methods and Materials: Data from 111 patients with head and neck cancer were used to establish a percentile-based scoring system for treatment plan quality evaluation on both a plan-by-plan and objective-by-objective basis. The percentile scores for each clinical objective and the overall treatment plan score were then visualized using a daisy plot. To validate our scoring method, 6 physicians were recruited to assess 60 plans, each using a scoring table consisting of a 5-point Likert scale (with scores ≥3 considered passing). Spearman correlation analysis was conducted to assess the association between increasing treatment plan percentile rank and physician rating, with Likert scores of 1 and 2 representing clinically unacceptable plans, scores of 3 and 4 representing plans needing minor edits, and a score of 5 representing clinically acceptable plans. Receiver operating characteristic curve analysis was used to assess the scoring system's ability to quantify plan quality. Results: Of the 60 plans scored by the physicians, 8 were deemed as clinically acceptable; these plans had an 89.0th ± 14.5 percentile value using our scoring system. The plans needing minor edits or deemed unacceptable had more variation, with scores falling in the 62.6nd ± 25.1 percentile and 35.6th ± 25.7 percentile, respectively. The estimated Spearman correlation coefficient between the physician score and treatment plan percentile was 0.53 (P < .001), indicating a moderate but statistically significant correlation. Receiver operating characteristic curve analysis demonstrated discernment between acceptable and unacceptable plan quality, with an area under the curve of 0.76. Conclusions: Our scoring system correlates with physician ratings while providing intuitive visual feedback for identifying good treatment plan quality, thereby indicating its utility in the quality assurance process.

8.
Med Phys ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896829

RESUMEN

BACKGROUND: Head and neck (HN) gross tumor volume (GTV) auto-segmentation is challenging due to the morphological complexity and low image contrast of targets. Multi-modality images, including computed tomography (CT) and positron emission tomography (PET), are used in the routine clinic to assist radiation oncologists for accurate GTV delineation. However, the availability of PET imaging may not always be guaranteed. PURPOSE: To develop a deep learning segmentation framework for automated GTV delineation of HN cancers using a combination of PET/CT images, while addressing the challenge of missing PET data. METHODS: Two datasets were included for this study: Dataset I: 524 (training) and 359 (testing) oropharyngeal cancer patients from different institutions with their PET/CT pairs provided by the HECKTOR Challenge; Dataset II: 90 HN patients(testing) from a local institution with their planning CT, PET/CT pairs. To handle potentially missing PET images, a model training strategy named the "Blank Channel" method was implemented. To simulate the absence of a PET image, a blank array with the same dimensions as the CT image was generated to meet the dual-channel input requirement of the deep learning model. During the model training process, the model was randomly presented with either a real PET/CT pair or a blank/CT pair. This allowed the model to learn the relationship between the CT image and the corresponding GTV delineation based on available modalities. As a result, our model had the ability to handle flexible inputs during prediction, making it suitable for cases where PET images are missing. To evaluate the performance of our proposed model, we trained it using training patients from Dataset I and tested it with Dataset II. We compared our model (Model 1) with two other models which were trained for specific modality segmentations: Model 2 trained with only CT images, and Model 3 trained with real PET/CT pairs. The performance of the models was evaluated using quantitative metrics, including Dice similarity coefficient (DSC), mean surface distance (MSD), and 95% Hausdorff Distance (HD95). In addition, we evaluated our Model 1 and Model 3 using the 359 test cases in Dataset I. RESULTS: Our proposed model(Model 1) achieved promising results for GTV auto-segmentation using PET/CT images, with the flexibility of missing PET images. Specifically, when assessed with only CT images in Dataset II, Model 1 achieved DSC of 0.56 ± 0.16, MSD of 3.4 ± 2.1 mm, and HD95 of 13.9 ± 7.6 mm. When the PET images were included, the performance of our model was improved to DSC of 0.62 ± 0.14, MSD of 2.8 ± 1.7 mm, and HD95 of 10.5 ± 6.5 mm. These results are comparable to those achieved by Model 2 and Model 3, illustrating Model 1's effectiveness in utilizing flexible input modalities. Further analysis using the test dataset from Dataset I showed that Model 1 achieved an average DSC of 0.77, surpassing the overall average DSC of 0.72 among all participants in the HECKTOR Challenge. CONCLUSIONS: We successfully refined a multi-modal segmentation tool for accurate GTV delineation for HN cancer. Our method addressed the issue of missing PET images by allowing flexible data input, thereby providing a practical solution for clinical settings where access to PET imaging may be limited.

10.
ArXiv ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38711427

RESUMEN

Recent advancements in machine learning have led to the development of novel medical imaging systems and algorithms that address ill-posed problems. Assessing their trustworthiness and understanding how to deploy them safely at test time remains an important and open problem. In this work, we propose using conformal prediction to compute valid and distribution-free bounds on downstream metrics given reconstructions generated by one algorithm, and retrieve upper/lower bounds and inlier/outlier reconstructions according to the adjusted bounds. Our work offers 1) test time image reconstruction evaluation without ground truth, 2) downstream performance guarantees, 3) meaningful upper/lower bound reconstructions, and 4) meaningful statistical inliers/outlier reconstructions. We demonstrate our method on post-mastectomy radiotherapy planning using 3D breast CT reconstructions, and show 1) that metric-guided bounds have valid coverage for downstream metrics while conventional pixel-wise bounds do not and 2) anatomical differences of upper/lower bounds between metric-guided and pixel-wise methods. Our work paves way for more meaningful and trustworthy test-time evaluation of medical image reconstructions. Code available at https://github.com/matthewyccheung/conformal-metric.

11.
J Appl Clin Med Phys ; 25(7): e14338, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38610118

RESUMEN

PURPOSE: Volumetric-modulated arc therapy (VMAT) is a widely accepted treatment method for head and neck (HN) and cervical cancers; however, creating contours and plan optimization for VMAT plans is a time-consuming process. Our group has created an automated treatment planning tool, the Radiation Planning Assistant (RPA), that uses deep learning models to generate organs at risk (OARs), planning structures and automates plan optimization. This study quantitatively evaluates the quality of contours generated by the RPA tool. METHODS: For patients with HN (54) and cervical (39) cancers, we retrospectively generated autoplans using the RPA. Autoplans were generated using deep-learning and RapidPlan models developed in-house. The autoplans were, then, applied to the original, physician-drawn contours, which were used as a ground truth (GT) to compare with the autocontours (RPA). Using a "two one-sided tests" (TOST) procedure, we evaluated whether the autocontour normal tissue dose was equivalent to that of the ground truth by a margin, δ, that we determined based on clinical judgement. We also calculated the number of plans that met established clinically accepted dosimetric criteria. RESULTS: For HN plans, 91.8% and 91.7% of structures met dosimetric criteria for automatic and manual contours, respectively; for cervical plans, 95.6% and 95.7% of structures met dosimetric criteria for automatic and manual contours, respectively. Autocontours were equivalent to the ground truth for 71% and 75% of common DVH metrics for the HN and cervix, respectively. CONCLUSIONS: This study shows that dosimetrically equivalent normal tissue contours can be created for HN and cervical cancers using deep learning techniques. In general, differences between the contours did not affect the passing or failing of clinical dose tolerances.


Asunto(s)
Neoplasias de Cabeza y Cuello , Órganos en Riesgo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Neoplasias del Cuello Uterino , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Neoplasias de Cabeza y Cuello/radioterapia , Radioterapia de Intensidad Modulada/métodos , Órganos en Riesgo/efectos de la radiación , Femenino , Estudios Retrospectivos , Neoplasias del Cuello Uterino/radioterapia , Aprendizaje Profundo , Algoritmos
12.
JCO Glob Oncol ; 10: e2300376, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38484191

RESUMEN

PURPOSE: Increased automation has been identified as one approach to improving global cancer care. The Radiation Planning Assistant (RPA) is a web-based tool offering automated radiotherapy (RT) contouring and planning to low-resource clinics. In this study, the RPA workflow and clinical acceptability were assessed by physicians around the world. METHODS: The RPA output for 75 cases was reviewed by at least three physicians; 31 radiation oncologists at 16 institutions in six countries on five continents reviewed RPA contours and plans for clinical acceptability using a 5-point Likert scale. RESULTS: For cervical cancer, RPA plans using bony landmarks were scored as usable as-is in 81% (with minor edits 93%); using soft tissue contours, plans were scored as usable as-is in 79% (with minor edits 96%). For postmastectomy breast cancer, RPA plans were scored as usable as-is in 44% (with minor edits 91%). For whole-brain treatment, RPA plans were scored as usable as-is in 67% (with minor edits 99%). For head/neck cancer, the normal tissue autocontours were acceptable as-is in 89% (with minor edits 97%). The clinical target volumes (CTVs) were acceptable as-is in 40% (with minor edits 93%). The volumetric-modulated arc therapy (VMAT) plans were acceptable as-is in 87% (with minor edits 96%). For cervical cancer, the normal tissue autocontours were acceptable as-is in 92% (with minor edits 99%). The CTVs for cervical cancer were scored as acceptable as-is in 83% (with minor edits 92%). The VMAT plans for cervical cancer were acceptable as-is in 99% (with minor edits 100%). CONCLUSION: The RPA, a web-based tool designed to improve access to high-quality RT in low-resource settings, has high rates of clinical acceptability by practicing clinicians around the world. It has significant potential for successful implementation in low-resource clinics.


Asunto(s)
Neoplasias de la Mama , Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias de la Mama/cirugía , Inteligencia Artificial , Neoplasias del Cuello Uterino/radioterapia , Planificación de la Radioterapia Asistida por Computador , Mastectomía
13.
J Appl Clin Med Phys ; 25(4): e14334, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38522034
14.
J Appl Clin Med Phys ; 25(4): e14259, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38317597

RESUMEN

BACKGROUND: The treatment planning process from segmentation to producing a deliverable plan is time-consuming and labor-intensive. Existing solutions automate the segmentation and planning processes individually. The feasibility of combining auto-segmentation and auto-planning for volumetric modulated arc therapy (VMAT) for rectal cancers in an end-to-end process is not clear. PURPOSE: To create and clinically evaluate a complete end-to-end process for auto-segmentation and auto-planning of VMAT for rectal cancer requiring only the gross tumor volume contour and a CT scan as inputs. METHODS: Patient scans and data were retrospectively selected from our institutional records for patients treated for malignant neoplasm of the rectum. We trained, validated, and tested deep learning auto-segmentation models using nnU-Net architecture for clinical target volume (CTV), bowel bag, large bowel, small bowel, total bowel, femurs, bladder, bone marrow, and female and male genitalia. For the CTV, we identified 174 patients with clinically drawn CTVs. We used data for 18 patients for all structures other than the CTV. The structures were contoured under the guidance of and reviewed by a gastrointestinal (GI) radiation oncologist. The predicted results for CTV in 35 patients and organs at risk (OAR) in six patients were scored by the GI radiation oncologist using a five-point Likert scale. For auto-planning, a RapidPlan knowledge-based planning solution was modeled for VMAT delivery with a prescription of 25 Gy in five fractions. The model was trained and tested on 20 and 34 patients, respectively. The resulting plans were scored by two GI radiation oncologists using a five-point Likert scale. Finally, the end-to-end pipeline was evaluated on 16 patients, and the resulting plans were scored by two GI radiation oncologists. RESULTS: In 31 of 35 patients, CTV contours were clinically acceptable without necessary modifications. The CTV achieved a Dice similarity coefficient of 0.85 (±0.05) and 95% Hausdorff distance of 15.25 (±5.59) mm. All OAR contours were clinically acceptable without edits, except for large and small bowel which were challenging to differentiate. However, contours for total, large, and small bowel were clinically acceptable. The two physicians accepted 100% and 91% of the auto-plans. For the end-to-end pipeline, the two physicians accepted 88% and 62% of the auto-plans. CONCLUSIONS: This study demonstrated that the VMAT treatment planning technique for rectal cancer can be automated to generate clinically acceptable and safe plans with minimal human interventions.


Asunto(s)
Radioterapia de Intensidad Modulada , Neoplasias del Recto , Humanos , Masculino , Femenino , Radioterapia de Intensidad Modulada/métodos , Estudios Retrospectivos , Dosificación Radioterapéutica , Neoplasias del Recto/radioterapia , Recto , Órganos en Riesgo , Planificación de la Radioterapia Asistida por Computador/métodos
15.
Lancet Oncol ; 25(3): 277-278, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38423045
16.
Phys Imaging Radiat Oncol ; 29: 100540, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38356692

RESUMEN

Background and Purpose: Auto-contouring of complex anatomy in computed tomography (CT) scans is a highly anticipated solution to many problems in radiotherapy. In this study, artificial intelligence (AI)-based auto-contouring models were clinically validated for lymph node levels and structures of swallowing and chewing in the head and neck. Materials and Methods: CT scans of 145 head and neck radiotherapy patients were retrospectively curated. One cohort (n = 47) was used to analyze seven lymph node levels and the other (n = 98) used to analyze 17 swallowing and chewing structures. Separate nnUnet models were trained and validated using the separate cohorts. For the lymph node levels, preference and clinical acceptability of AI vs human contours were scored. For the swallowing and chewing structures, clinical acceptability was scored. Quantitative analyses of the test sets were performed for AI vs human contours for all structures using overlap and distance metrics. Results: Median Dice Similarity Coefficient ranged from 0.77 to 0.89 for lymph node levels and 0.86 to 0.96 for chewing and swallowing structures. The AI contours were superior to or equally preferred to the manual contours at rates ranging from 75% to 91%; there was not a significant difference in clinical acceptability for nodal levels I-V for manual versus AI contours. Across all AI-generated lymph node level contours, 92% were rated as usable with stylistic to no edits. Of the 340 contours in the chewing and swallowing cohort, 4% required minor edits. Conclusions: An accurate approach was developed to auto-contour lymph node levels and chewing and swallowing structures on CT images for patients with intact nodal anatomy. Only a small portion of test set auto-contours required minor edits.

17.
Comput Med Imaging Graph ; 113: 102353, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38387114

RESUMEN

Creating synthetic CT (sCT) from magnetic resonance (MR) images enables MR-based treatment planning in radiation therapy. However, the MR images used for MR-guided adaptive planning are often truncated in the boundary regions due to the limited field of view and the need for sequence optimization. Consequently, the sCT generated from these truncated MR images lacks complete anatomic information, leading to dose calculation error for MR-based adaptive planning. We propose a novel structure-completion generative adversarial network (SC-GAN) to generate sCT with full anatomic details from the truncated MR images. To enable anatomy compensation, we expand input channels of the CT generator by including a body mask and introduce a truncation loss between sCT and real CT. The body mask for each patient was automatically created from the simulation CT scans and transformed to daily MR images by rigid registration as another input for our SC-GAN in addition to the MR images. The truncation loss was constructed by implementing either an auto-segmentor or an edge detector to penalize the difference in body outlines between sCT and real CT. The experimental results show that our SC-GAN achieved much improved accuracy of sCT generation in both truncated and untruncated regions compared to the original cycleGAN and conditional GAN methods.


Asunto(s)
Tomografía Computarizada por Rayos X , Humanos , Simulación por Computador
18.
Int J Radiat Oncol Biol Phys ; 118(2): 554-564, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37619789

RESUMEN

PURPOSE: Our purpose was to analyze the effect on gastrointestinal (GI) toxicity models when their dose-volume metrics predictors are derived from segmentations of the peritoneal cavity after different contouring approaches. METHODS AND MATERIALS: A random forest machine learning approach was used to predict acute grade ≥3 GI toxicity from dose-volume metrics and clinicopathologic factors for 246 patients (toxicity incidence = 9.5%) treated with definitive chemoradiation for squamous cell carcinoma of the anus. Three types of random forest models were constructed based on different bowel bag segmentation approaches: (1) physician-delineated after Radiation Therapy Oncology Group (RTOG) guidelines, (2) autosegmented by a deep learning model (nnU-Net) following RTOG guidelines, and (3) autosegmented but spanning the entire bowel space. Each model type was evaluated using repeated cross-validation (100 iterations; 50%/50% training/test split). The performance of the models was assessed using area under the precision-recall curve (AUPRC) and the receiver operating characteristic curve (AUROCC), as well as optimal F1 score. RESULTS: When following RTOG guidelines, the models based on the nnU-Net auto segmentations (mean values: AUROCC, 0.71 ± 0.07; AUPRC, 0.42 ± 0.09; F1 score, 0.46 ± 0.08) significantly outperformed (P < .001) those based on the physician-delineated contours (mean values: AUROCC, 0.67 ± 0.07; AUPRC, 0.34 ± 0.08; F1 score, 0.36 ± 0.07). When spanning the entire bowel space, the performance of the autosegmentation models improved considerably (mean values: AUROCC, 0.87 ± 0.05; AUPRC, 0.70 ± 0.09; F1 score, 0.68 ± 0.09). CONCLUSIONS: Random forest models were superior at predicting acute grade ≥3 GI toxicity when based on RTOG-defined bowel bag autosegmentations rather than physician-delineated contours. Models based on autosegmentations spanning the entire bowel space show further considerable improvement in model performance. The results of this study should be further validated using an external data set.


Asunto(s)
Neoplasias del Ano , Enfermedades Gastrointestinales , Humanos , Bosques Aleatorios , Cavidad Peritoneal , Neoplasias del Ano/radioterapia , Quimioradioterapia/efectos adversos , Enfermedades Gastrointestinales/etiología
19.
Pract Radiat Oncol ; 14(1): e75-e85, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37797883

RESUMEN

PURPOSE: Our purpose was to identify variations in the clinical use of automatically generated contours that could be attributed to software error, off-label use, or automation bias. METHODS AND MATERIALS: For 500 head and neck patients who were contoured by an in-house automated contouring system, Dice similarity coefficient and added path length were calculated between the contours generated by the automated system and the final contours after editing for clinical use. Statistical process control was used and control charts were generated with control limits at 3 standard deviations. Contours that exceeded the thresholds were investigated to determine the cause. Moving mean control plots were then generated to identify dosimetrists who were editing less over time, which could be indicative of automation bias. RESULTS: Major contouring edits were flagged for: 1.0% brain, 3.1% brain stem, 3.5% left cochlea, 2.9% right cochlea, 4.8% esophagus, 4.1% left eye, 4.0% right eye, 2.2% left lens, 4.9% right lens, 2.5% mandible, 11% left optic nerve, 6.1% right optic nerve, 3.8% left parotid, 5.9% right parotid, and 3.0% of spinal cord contours. Identified causes of editing included unexpected patient positioning, deviation from standard clinical practice, and disagreement between dosimetrist preference and automated contouring style. A statistically significant (P < .05) difference was identified between the contour editing practice of dosimetrists, with 1 dosimetrist editing more across all organs at risk. Eighteen percent (27/150) of moving mean control plots created for 5 dosimetrists indicated the amount of contour editing was decreasing over time, possibly corresponding to automation bias. CONCLUSIONS: The developed system was used to detect statistically significant edits caused by software error, unexpected clinical use, and automation bias. The increased ability to detect systematic errors that occur when editing automatically generated contours will improve the safety of the automatic treatment planning workflow.


Asunto(s)
Cuello , Programas Informáticos , Humanos , Esófago , Glándula Parótida , Planificación de la Radioterapia Asistida por Computador , Órganos en Riesgo
20.
Int J Radiat Oncol Biol Phys ; 118(1): 231-241, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37552151

RESUMEN

PURPOSE: The aim of this study was to investigate the dosimetric and clinical effects of 4-dimensional computed tomography (4DCT)-based longitudinal dose accumulation in patients with locally advanced non-small cell lung cancer treated with standard-fractionated intensity-modulated radiation therapy (IMRT). METHODS AND MATERIALS: Sixty-seven patients were retrospectively selected from a randomized clinical trial. Their original IMRT plan, planning and verification 4DCTs, and ∼4-month posttreatment follow-up CTs were imported into a commercial treatment planning system. Two deformable image registration algorithms were implemented for dose accumulation, and their accuracies were assessed. The planned and accumulated doses computed using average-intensity images or phase images were compared. At the organ level, mean lung dose and normal-tissue complication probability (NTCP) for grade ≥2 radiation pneumonitis were compared. At the region level, mean dose in lung subsections and the volumetric overlap between isodose intervals were compared. At the voxel level, the accuracy in estimating the delivered dose was compared by evaluating the fit of a dose versus radiographic image density change (IDC) model. The dose-IDC model fit was also compared for subcohorts based on the magnitude of NTCP difference (|ΔNTCP|) between planned and accumulated doses. RESULTS: Deformable image registration accuracy was quantified, and the uncertainty was considered for the voxel-level analysis. Compared with planned doses, accumulated doses on average resulted in <1-Gy lung dose increase and <2% NTCP increase (up to 8.2 Gy and 18.8% for a patient, respectively). Volumetric overlap of isodose intervals between the planned and accumulated dose distributions ranged from 0.01 to 0.93. Voxel-level dose-IDC models demonstrated a fit improvement from planned dose to accumulated dose (pseudo-R2 increased 0.0023) and a further improvement for patients with ≥2% |ΔNTCP| versus for patients with <2% |ΔNTCP|. CONCLUSIONS: With a relatively large cohort, robust image registrations, multilevel metric comparisons, and radiographic image-based evidence, we demonstrated that dose accumulation more accurately represents the delivered dose and can be especially beneficial for patients with greater longitudinal response.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Radioterapia de Intensidad Modulada , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Radioterapia de Intensidad Modulada/efectos adversos , Radioterapia de Intensidad Modulada/métodos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Estudios Retrospectivos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada Cuatridimensional/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA