Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 655
Filtrar
1.
Environ Sci Technol ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264360

RESUMEN

Quaternary ammonium compounds (QACs) are high-production chemicals used as cleaning and disinfecting agents. Due to their ubiquitous presence in the environment and several toxic effects described, human exposure to these chemicals gained increasing attention in recent years. However, very limited data on the biotransformation of QACs is available, hampering exposure assessment. In this study, three QACs (dimethyl dodecyl ammonium, C10-DDAC; benzyldimethyl dodecylammonium, C12-BAC; cetyltrimethylammonium, C16-ATMAC) commonly detected in indoor microenvironments were incubated with human liver microsomes and cytosol (HLM/HLC) simulating Phase I and II metabolism. Thirty-one Phase I metabolites were annotated originating from 19 biotransformation reactions. Four metabolites of C10-DDAC were described for the first time. A detailed assessment of experimental fragmentation spectra allowed to characterize potential oxidation sites. For each annotated metabolite, drift-tube ion-mobility derived collision cross section (DTCCSN2) values were reported, serving as an additional identification parameter and allowing the characterization of changes in DTCCSN2 values following metabolism. Lastly, eight metabolites, including four metabolites of both C12-BAC and C10-DDAC, were confirmed in human urine samples showing high oxidation states through introduction of up to four oxygen atoms. This is the first report of higher oxidized C10-DDAC metabolites in human urine facilitating future biomonitoring studies on QACs.

2.
Environ Int ; 190: 108912, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39116556

RESUMEN

BACKGROUND: Bisphenol A (BPA; or 4,4'-isopropylidenediphenol) is an endocrine disrupting chemical. It was widely used in a variety of plastic-based manufactured products for several years. The European Food Safety Authority (EFSA) recently reduced the Tolerable Daily Intake (TDI) for BPA by 20,000 times due to concerns about immune-toxicity. OBJECTIVE: We used human biomonitoring (HBM) data to investigate the general level of BPA exposure from 2007 to 2014 of European women aged 18-73 years (n = 4,226) and its determinants. METHODS: Fifteen studies from 12 countries (Austria, Belgium, Denmark, France, Germany, Greece, Israel, Luxembourg, Slovenia, Spain, Sweden, and the United Kingdom) were included in the BPA Study protocol developed within the European Joint Programme HBM4EU. Seventy variables related to the BPA exposure were collected through a rigorous post-harmonization process. Linear mixed regression models were used to investigate the determinants of total urine BPA in the combined population. RESULTS: Total BPA was quantified in 85-100 % of women in 14 out of 15 contributing studies. Only the Austrian PBAT study (Western Europe), which had a limit of quantification 2.5 to 25-fold higher than the other studies (LOQ=2.5 µg/L), found total BPA in less than 5 % of the urine samples analyzed. The geometric mean (GM) of total urine BPA ranged from 0.77 to 2.47 µg/L among the contributing studies. The lowest GM of total BPA was observed in France (Western Europe) from the ELFE subset (GM=0.77 µg/L (0.98 µg/g creatinine), n = 1741), and the highest levels were found in Belgium (Western Europe) and Greece (Southern Europe), from DEMOCOPHES (GM=2.47 µg/L (2.26 µg/g creatinine), n = 129) and HELIX-RHEA (GM=2.47 µg/L (2.44 µg/g creatinine), n = 194) subsets, respectively. One hundred percent of women in 14 out of 15 data collections in this study exceeded the health-based human biomonitoring guidance value for the general population (HBM-GVGenPop) of 0.0115 µg total BPA/L urine derived from the updated EFSA's BPA TDI. Variables related to the measurement of total urine BPA and those related to the main socio-demographic characteristics (age, height, weight, education, smoking status) were collected in almost all studies, while several variables related to BPA exposure factors were not gathered in most of the original studies (consumption of beverages contained in plastic bottles, consumption of canned food or beverages, consumption of food in contact with plastic packaging, use of plastic film or plastic containers for food, having a plastic floor covering in the house, use of thermal paper…). No clear determinants of total urine BPA concentrations among European women were found. A broader range of data planned for collection in the original questionnaires of the contributing studies would have resulted in a more thorough investigation of the determinants of BPA exposure in European women. CONCLUSION: This study highlights the urgent need for action to further reduce exposure to BPA to protect the population, as is already the case in the European Union. The study also underscores the importance of pre-harmonizing HBM design and data for producing comparable data and interpretable results at a European-wide level, and to increase HBM uptake by regulatory agencies.


Asunto(s)
Compuestos de Bencidrilo , Monitoreo Biológico , Exposición a Riesgos Ambientales , Fenoles , Humanos , Compuestos de Bencidrilo/orina , Compuestos de Bencidrilo/análisis , Femenino , Fenoles/orina , Fenoles/análisis , Monitoreo Biológico/métodos , Adulto , Persona de Mediana Edad , Europa (Continente) , Anciano , Adulto Joven , Adolescente , Exposición a Riesgos Ambientales/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Contaminantes Ambientales/orina , Contaminantes Ambientales/análisis , Disruptores Endocrinos/orina , Disruptores Endocrinos/análisis
3.
Environ Int ; 190: 108931, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39142134

RESUMEN

BACKGROUND: Phthalates are ubiquitous in the environment. Despite short half-lives, chronic exposure can lead to endocrine disruption. The safety of phthalate substitute DINCH is unclear. OBJECTIVE: To evaluate associations between urinary concentrations of phthalate/DINCH metabolites and body mass index (BMI) z-score among children and adolescents. METHOD: We used Human Biomonitoring for Europe Aligned Studies data from 2876 children (12 studies, 6-12 years, 2014-2021) and 2499 adolescents (10 studies, 12-18 years, 2014-2021) with up to 14 phthalate/DINCH urinary metabolites. We used multilevel linear regression to assess associations between phthalate/DINCH concentrations and BMI z-scores, testing effect modification by sex. In a subset, Bayesian kernel machine regression (BKMR) and quantile-based g-computation assessed important predictors and mixture effects. RESULTS: In children, we found few associations in single pollutant models and no interactions by sex (p-interaction > 0.1). BKMR detected no relevant exposures (posterior inclusion probabilities, PIPs < 0.25), nor joint mixture effect. In adolescent single pollutant analysis, mono-ethyl phthalate (MEP) concentrations were associated with higher BMI z-score in males (ß = 0.08, 95 % CI: 0.001,0.15, per interquartile range increase in ln-transformed concentrations, p-interaction = 0.06). Conversely, mono-isobutyl phthalate (MiBP) was associated with a lower BMI z-score in both sexes (ß = -0.13, 95 % CI: -0.19, -0.07, p-interaction = 0.74), as was sum of di(2-ethylhexyl) phthalate (∑DEHP) metabolites in females only (ß = -0.08, 95 % CI: -0.14, -0.02, p-interaction = 0.01). In BKMR, higher BMI z-scores were predicted by MEP (PIP=0.90) and MBzP (PIP=0.84) in males. Lower BMI z-scores were predicted by MiBP (PIP=0.999), OH-MIDP (PIP=0.88) and OH-MINCH (PIP=0.72) in both sexes, less robustly by DEHP (PIP=0.61) in females. In quantile g-computation, the overall mixture effect was null for males, and trended negative for females (ß = -0.11, 95 % CI: -0.25, 0.03, per joint exposure quantile). CONCLUSION: In this large Europe-wide study, we found age/sex-specific differences between phthalate metabolites and BMI z-score, stronger in adolescents. Longitudinal studies with repeated phthalate measurements are needed.


Asunto(s)
Índice de Masa Corporal , Exposición a Riesgos Ambientales , Contaminantes Ambientales , Ácidos Ftálicos , Humanos , Ácidos Ftálicos/orina , Adolescente , Niño , Europa (Continente) , Estudios Transversales , Masculino , Femenino , Contaminantes Ambientales/orina , Contaminantes Ambientales/metabolismo , Exposición a Riesgos Ambientales/análisis , Monitoreo Biológico
4.
Rapid Commun Mass Spectrom ; 38(21): e9901, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39198935

RESUMEN

RATIONALE: Ion-mobility (IM)-derived collision cross-section (CCS) values can serve as a valuable additional identification parameter within suspect and non-target screening studies of environmental contaminants. However, these applications require to assess the reproducibility of CCS calculations between different IM set-ups. Especially for the comparison of trapped and drift-tube IM (TIMS/DTIM) derived CCS values, data for environmental applications is lacking. METHODS: The presented study assessed the bias of TIMS derived CCSN2 (TIMSCCSN2) values of 48 environmental contaminants from three classes in comparison to a previously established DTIM database. Based on two sets of isomeric bisphenols, the resolving power of both systems was compared, addressing the instrumental settings which influence the resolution of TIMS measurements. RESULTS: For 91% of the datapoints, bias between TIMSCCSN2 and DTCCSN2 values (latter set as reference) were < 2%, indicating a good inter-platform reproducibility. TIMS resolving power was dependent on the selected mobility window and ramping times whereby a resolution of up to 116 was achieved. Similar resolving power was observed for multiplexed DTIMS data if a high-resolution post-processing step was implemented. CONCLUSIONS: These results provide valuable insights in CCSN2 reproducibility facilitating database transfer in future TIMS based studies. Knowledge on the influence of acquisition settings on robustness of TIMSCCSN2 calculations and resolving power can ease method development supporting efficient development and reliable identifications of emerging environmental contaminants.

5.
Environ Res ; 260: 119753, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39127331

RESUMEN

SHORT: and ultra-short chain perfluoroalkyl substances (S- and US-PFAS) are alternatives for the long-chain PFAS which have been more regulated over time. They are highly mobile in the environment and can easily reach drinking water sources which can become an important human exposure route. Furthermore, there have been growing concerns about the presence of PFAS in Flanders. Because of this, human exposure to S- and US-PFAS through Flemish drinking water was evaluated in this study. For this purpose, the presence of 2 S-PFAS (PFBS and PFBA) and 5 US-PFAS (PFPrS, PFEtS, TFMS, PFPrA and TFA) was investigated in 47 tap water samples, collected from different Flemish provinces, and 16 bottled waters purchased in Flanders. Out of the 7 target PFAS, 4 (PFBA, PFBS, PFPrS and PFEtS) were detected at concentrations above LOQ in tap water. In bottled water, only TFMS was present above its LOQ. PFAS concentrations in all analyzed water samples ranged from <0.7 to 7.3 ng/L for PFBS, <0.03-15.0 ng/L for TFMS and <0.9-12.0 ng/L for PFBA. PFPrS was only detected once above its LOQ, at 0.6 ng/L. No value could be reported for PFPrA due to high procedural blanks resulting in a high LOQ, nor for TFA due to high matrix effect. No significant differences in PFAS concentrations were seen in tap water among different drinking water companies, provinces, nor between the two types of analyzed bottled water (natural mineral water vs spring water). The use of a commercial carbon filter significantly reduced the median concentrations of the studied compounds in tap water. Finally, it was estimated that the presence of S- and US-PFAS in Flemish drinking water does not pose an immediate threat to human health, as concentrations were at least two orders of magnitude below the available guidance values.


Asunto(s)
Agua Potable , Fluorocarburos , Contaminantes Químicos del Agua , Bélgica , Agua Potable/química , Agua Potable/análisis , Humanos , Contaminantes Químicos del Agua/análisis , Fluorocarburos/análisis , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente
6.
J Pharm Biomed Anal ; 248: 116335, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38972226

RESUMEN

Synthetic cathinones are the second largest group of new psychoactive substances (NPS) monitored by the European Monitoring Centre for Drugs and Drug Addiction. Although 3-methylmethcathinone (3-MMC, C11H15NO) is legally banned in many countries, it is readily available for purchase online and on the street. Due to the scarcity of information regarding the pharmacokinetic and toxicological profile of 3-MMC, understanding its biotransformation pathways is crucial in determining its potential toxicity in humans and in the development of analytical methods for screening of human matrices. To gain more insight, Phase I and Phase II in vitro biotransformation of 3-MMC was investigated using human liver microsomes and human liver cytosol. Suspect and non-target screening approaches were employed to identify metabolites. To confirm in vitro results in an in vivo setting, human matrices (i.e., plasma, urine, saliva and hair) positive for 3-MMC (n=31) were screened. In total three biotransformation products were identified in vitro: C11H15NO2 (a hydroxylated derivate), C11H17NO (a keto-reduced derivate) and C10H13NO (an N-desmethyl derivate). All three were confirmed as human metabolites in respectively 16 %, 52 % and 42 % of the analysed human samples. In total, 61 % of the analysed samples were positive for at least one of the three metabolites. Interestingly, three urine samples were positive for all three metabolites. The presence of 3-MMC in saliva and hair indicates its potential applicability in specific settings, e.g., roadside testing or chronic consumption analysis. To our knowledge, C11H17NO was not detected before in vivo. Although some of these metabolites have been previously suggested in vitro or in a single post mortem case report, a wide in vivo confirmation including the screening of four different human matrices was performed for the first time. These metabolites could serve as potential human biomarkers to monitor human 3-MMC consumption effectively.


Asunto(s)
Biotransformación , Citosol , Cabello , Metanfetamina , Microsomas Hepáticos , Humanos , Microsomas Hepáticos/metabolismo , Citosol/metabolismo , Metanfetamina/análogos & derivados , Metanfetamina/metabolismo , Metanfetamina/farmacocinética , Cabello/química , Cabello/metabolismo , Saliva/metabolismo , Saliva/química , Psicotrópicos/metabolismo , Psicotrópicos/farmacocinética , Masculino , Adulto , Espectrometría de Masas en Tándem/métodos
7.
Metabolites ; 14(5)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38786725

RESUMEN

Torin1, a selective kinase inhibitor targeting the mammalian target of rapamycin (mTOR), remains widely used in autophagy research due to its potent autophagy-inducing abilities, regardless of its unspecific properties. Recognizing the impact of mTOR inhibition on metabolism, our objective was to develop a reliable and thorough untargeted metabolomics workflow to study torin1-induced metabolic changes in mouse embryonic fibroblast (MEF) cells. Crucially, our quality assurance and quality control (QA/QC) protocols were designed to increase confidence in the reported findings by reducing the likelihood of false positives, including a validation experiment replicating all experimental steps from sample preparation to data analysis. This study investigated the metabolic fingerprint of torin1 exposure by using liquid chromatography-high resolution mass spectrometry (LC-HRMS)-based untargeted metabolomics platforms. Our workflow identified 67 altered metabolites after torin1 exposure, combining univariate and multivariate statistics and the implementation of a validation experiment. In particular, intracellular ceramides, diglycerides, phosphatidylcholines, phosphatidylethanolamines, glutathione, and 5'-methylthioadenosine were downregulated. Lyso-phosphatidylcholines, lyso-phosphatidylethanolamines, glycerophosphocholine, triglycerides, inosine, and hypoxanthine were upregulated. Further biochemical pathway analyses provided deeper insights into the reported changes. Ultimately, our study provides a valuable workflow that can be implemented for future investigations into the effects of other compounds, including more specific autophagy modulators.

8.
Dent Mater ; 40(7): 1025-1030, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38755042

RESUMEN

OBJECTIVES: Resin composites may release bisphenol A (BPA) due to impurities present in the monomers. However, there is a lack of knowledge regarding the leaching characteristics of BPA from resin composites. Therefore, experimental resin composites were prepared with known amounts of BPA. The objective of this study was (1) to determine which amount of BPA initially present in the material leaches out in the short term and, (2) how this release is influenced by the resin composition. METHODS: BPA (0, 0.001, 0.01, or 0.1 wt%) was added to experimental resin composites containing 60 mol% BisGMA, BisEMA(3), or UDMA, respectively, as base monomer and 40 mol% TEGDMA as diluent monomer. Polymerized samples (n = 5) were immersed at 37 °C for 7 days in 1 mL of water, which was collected and refreshed daily. BPA release was quantified with UPLC-MS/MS after derivatization with pyridine-3-sulfonyl chloride. RESULTS: Between 0.47 to 0.67 mol% of the originally added BPA eluted from the resin composites after 7 days. Similar elution trends were observed irrespective of the base monomer. Two-way ANOVA showed a significant effect of the base monomer on BPA release, but the differences were small and not consistent. SIGNIFICANCE: The released amount of BPA was directly proportional to the quantity of BPA present in the resin composite as an impurity. BPA release was mainly diffusion-based, while polymer composition seemed to play a minor role. Our results underscore the importance for manufacturers only to use monomers of the highest purity in dental resin composites to avoid unnecessary BPA exposure in patients.


Asunto(s)
Compuestos de Bencidrilo , Resinas Compuestas , Fenoles , Fenoles/análisis , Fenoles/química , Compuestos de Bencidrilo/química , Resinas Compuestas/química , Ensayo de Materiales , Cromatografía Líquida de Alta Presión , Espectrometría de Masas en Tándem , Poliuretanos/química , Ácidos Polimetacrílicos/química , Metacrilatos/química , Metacrilatos/análisis , Polietilenglicoles/química , Polimerizacion
9.
Sci Total Environ ; 935: 173223, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38761943

RESUMEN

Wastewater-based epidemiology (WBE) and wastewater surveillance have become a valuable complementary data source to collect information on community-wide exposure through the measurement of human biomarkers in influent wastewater (IWW). In WBE, normalization of data with the de facto population that corresponds to a wastewater sample is crucial for a correct interpretation of spatio-temporal trends in exposure and consumption patterns. However, knowledge gaps remain in identifying and validating suitable de facto population biomarkers (PBs) for refinement of WBE back-estimations. WBE studies that apply de facto PBs (including hydrochemical parameters, utility consumption data sources, endo- and exogenous chemicals, biological biomarkers and signalling records) for relative trend analysis and absolute population size estimation were systematically reviewed from three databases (PubMed, Web of Science, SCOPUS) according to the PRISMA guidelines. We included in this review 81 publications that accounted for daily variations in population sizes by applying de facto population normalization. To date, a wide range of PBs have been proposed for de facto population normalization, complicating the comparability of normalized measurements across WBE studies. Additionally, the validation of potential PBs is complicated by the absence of an ideal external validator, magnifying the overall uncertainty for population normalization in WBE. Therefore, this review proposes a conceptual tier-based cross-validation approach for identifying and validating de facto PBs to guide their integration for i) relative trend analysis, and ii) absolute population size estimation. Furthermore, this review also provides a detailed evaluation of the uncertainty observed when comparing different de jure and de facto population estimation approaches. This study shows that their percentual differences can range up to ±200 %, with some exceptions showing even larger variations. This review underscores the need for collaboration among WBE researchers to further streamline the application of de facto population normalization and to evaluate the robustness of different PBs in different socio-demographic communities.


Asunto(s)
Aguas Residuales , Humanos , Biomarcadores/análisis , Monitoreo del Ambiente/métodos , Monitoreo Epidemiológico Basado en Aguas Residuales
10.
Sci Total Environ ; 929: 172426, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38631641

RESUMEN

BACKGROUND: Exposure to phthalate/DINCH metabolites can induce human reproductive toxicity, however, their endocrine-disrupting mechanisms are not fully elucidated. OBJECTIVE: To investigate the association between concentrations of phthalate/DINCH metabolites, serum kisspeptin, and reproductive hormones among European teenagers from three of the HBM4EU Aligned Studies. METHODS: In 733 Belgian (FLEHS IV study), Slovak (PCB cohort follow-up), and Spanish (BEA study) teenagers, ten phthalate and two DINCH metabolites were measured in urine by high-performance liquid chromatography-tandem mass spectrometry. Serum kisspeptin (kiss54) protein, follicle-stimulating hormone (FSH), total testosterone (TT), estradiol (E2), and sex hormone-binding globulin (SHBG) levels were measured by immunosorbent assays. Free Androgen Index (FAI) was calculated as a proxy of free testosterone. Adjusted sex-stratified linear regression models for individual studies, mixed effect models (LME) accounting for random effects for pooled studies, and g-computation and Bayesian kernel machine regression (BKMR) models for the phthalate/DINCH mixture were performed. RESULTS: The LME suggested that each IQR increase in ln-transformed levels of several phthalates was associated with lower kisspeptin [MnBP: %change (95%CI): -2.8 (-4.2;-0.4); MEHP: -1.4 (-3.4,0.2)] and higher FSH [∑DINP: 11.8 (-0.6;25.1)] levels in females from pooled studies. G-computation showed that the phthalates/DINCH mixture was associated with lower kisspeptin [-4.28 (-8.07;-0.34)] and higher FSH [22.13 (0.5;48.4)] also in females; BKMR showed similar although non-significant pattern. In males, higher phthalates metabolites [MEHP: -12.22 (-21.09;-1.18); oxo-MEHP: -12.73 (-22.34;-1.93)] were associated with lower TT and FAI, although higher DINCH [OH-MINCH: 16.31 (6.23;27.35), cx-MINCH: 16.80 (7.03;27.46), ∑DINCH: 17.37 (7.26;29.74)] were associated with higher TT levels. No mixture associations were found in males. CONCLUSION: We observed sex-specific associations between urinary concentrations of phthalate/DINCH metabolites and the panel of selected effect biomarkers (kisspeptin and reproductive hormones). This suggests that exposure to phthalates would be associated with changes in kisspeptin levels, which would affect the HPG axis and thus influence reproductive health. However, further research is needed, particularly for phthalate replacements such as DINCH.


Asunto(s)
Contaminantes Ambientales , Kisspeptinas , Ácidos Ftálicos , Ácidos Ftálicos/orina , Humanos , Adolescente , Femenino , Estudios Transversales , Masculino , Contaminantes Ambientales/orina , Contaminantes Ambientales/sangre , Hormona Folículo Estimulante/sangre , Testosterona/sangre , Testosterona/metabolismo , Exposición a Riesgos Ambientales/estadística & datos numéricos , Globulina de Unión a Hormona Sexual/metabolismo , Estradiol/sangre , Disruptores Endocrinos/orina
11.
Int J Hyg Environ Health ; 259: 114383, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38652942

RESUMEN

Children are known to be more vulnerable to exposure to endocrine-disrupting chemicals (EDCs) compared to adults, but evaluating the exposure pathways can be challenging. This research employed target and non-target analysis (NTA) to examine the exposure characteristics of EDCs in spot urine samples collected from 46 children's (aged 3-12 years) and their parents in Hong Kong (Chinese/Western lifestyle) and Guangzhou (mainly Chinese lifestyle). The results revealed that the geometric mean concentrations of phthalate esters metabolites (mPAEs) and bisphenols (BPs) in children's urine were 127.3 µg/gcrea and 2.5 µg/gcrea in Guangzhou, and 93.7 µg/gcrea and 2.9 µg/gcrea in Hong Kong, respectively, which were consistent with global levels. NTA identified a total of 1069 compounds, including 106 EDCs, commonly detected in food, cosmetics, and drugs. Notable regional differences were observed between Guangzhou and Hong Kong with potential sources of EDCs including dietary and cosmetic additives, toys, flooring and dust, as well as differences in lifestyles, diet, and living environment. However, age was found to significantly impact EDC exposure. The quantified EDCs (mPAEs and BPs) posed possible health risks to 60% of the children. Moreover, the presence of caffeine in children's urine, which exhibited higher detection rates in children from Hong Kong (95.6%) and Guangzhou (44.4%), warrants further attention. The sources of EDCs exposure in these regions need to be fully confirmed.


Asunto(s)
Disruptores Endocrinos , Exposición a Riesgos Ambientales , Contaminantes Ambientales , Estilo de Vida , Ácidos Ftálicos , Humanos , Disruptores Endocrinos/orina , Niño , Preescolar , Masculino , Femenino , Exposición a Riesgos Ambientales/análisis , China , Ácidos Ftálicos/orina , Contaminantes Ambientales/orina , Fenoles/orina , Adulto , Hong Kong , Padres , Compuestos de Bencidrilo/orina , Pueblos del Este de Asia
12.
Sci Total Environ ; 929: 172483, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38631629

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) remain controversial due to their high persistency and potential human toxicity. Although occupational exposure to PFAS has been widely investigated, the implications of PFAS occurrence in the general population remain to be unraveled. Considering that serum from most people contains PFAS, the aim of this study was to characterize the lipidomic profile in human serum from a general cohort (n = 40) with residual PFAS levels. The geometric means of ∑PFAS (11.8 and 4.4 ng/mL) showed significant differences (p < 0.05) for the samples with the highest (n = 20) and lowest (n = 20) concentrations from the general population respectively. Reverse-phase liquid chromatography coupled to drift tube ion mobility and high-resolution mass spectrometry using dual polarity ionization was used to characterize the lipid profile in both groups. The structural elucidation involved the integration of various parameters, such as retention time, mass-to-charge ratio, tandem mass spectra and collision cross section values. This approach yielded a total of 20 potential biomarkers linked to the perturbed glycerophospholipid metabolism, energy metabolism and sphingolipid metabolism. Among these alterations, most lipids were down-regulated and some specific lipids (PC 36:5, PC 37:4 and PI O-34:2) exhibited a relatively strong Spearman correlation and predictive capacity for PFAS contamination. This study could support further toxicological assessments and mechanistic investigations into the effects of PFAS exposure on the lipidome.


Asunto(s)
Contaminantes Ambientales , Fluorocarburos , Lipidómica , Humanos , Fluorocarburos/sangre , Contaminantes Ambientales/sangre , Cromatografía Liquida , China , Espectrometría de Masas , Estudios de Cohortes , Adulto , Masculino , Exposición a Riesgos Ambientales/estadística & datos numéricos , Femenino , Persona de Mediana Edad , Espectrometría de Movilidad Iónica/métodos , Lípidos/sangre , Monitoreo del Ambiente/métodos , Pueblos del Este de Asia
13.
Environ Int ; 186: 108605, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38569425

RESUMEN

Due to endocrine disrupting effects, di-(2-ethylhexyl) phthalate (DEHP), a plasticizer used to soften plastic medical devices, was restricted in the EU Medical Devices Regulation (EU MDR 2017/745) and gradually replaced by alternative plasticizers. Neonates hospitalized in the neonatal intensive care unit (NICU) are vulnerable to toxic effects of plasticizers. From June 2020 to August 2022, urine samples (n = 1070) were repeatedly collected from premature neonates (n = 132, 4-10 samples per patient) born at <31 weeks gestational age and/or <1500 g birth weight in the Antwerp University Hospital, Belgium. Term control neonates (n = 21, 1 sample per patient) were included from the maternity ward. Phthalate and alternative plasticizers' metabolites were analyzed using liquid-chromatography coupled to tandem mass spectrometry. Phthalate metabolites were detected in almost all urine samples. Metabolites of alternative plasticizers, di-(2-ethylhexyl)-adipate (DEHA), di-(2-ethylhexyl)-terephthalate (DEHT) and cyclohexane-1,2-dicarboxylic-di-isononyl-ester (DINCH), had detection frequencies ranging 30-95 %. Urinary phthalate metabolite concentrations were significantly higher in premature compared to control neonates (p = 0.023). NICU exposure to respiratory support devices and blood products showed increased phthalate metabolite concentrations (p < 0.001). Phthalate exposure increased from birth until four weeks postnatally. The estimated phthalate intake exceeded animal-derived no-effect-levels (DNEL) in 10 % of samples, with maximum values reaching 24 times the DNEL. 29 % of premature neonates had at least once an estimated phthalate intake above the DNEL. Preterm neonates are still exposed to phthalates during NICU stay, despite the EU Medical Devices Regulation. NICU exposure to alternative plasticizers is increasing, though currently not regulated, with insufficient knowledge on their hazard profile.


Asunto(s)
Disruptores Endocrinos , Unidades de Cuidado Intensivo Neonatal , Ácidos Ftálicos , Plastificantes , Humanos , Plastificantes/análisis , Ácidos Ftálicos/orina , Recién Nacido , Disruptores Endocrinos/análisis , Disruptores Endocrinos/orina , Femenino , Masculino , Exposición a Riesgos Ambientales/análisis , Bélgica , Recien Nacido Prematuro
14.
Sci Total Environ ; 927: 172187, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38582107

RESUMEN

Plasticizers (PLs) and organophosphate flame retardants (OPFRs) are ubiquitous in the environment due to their widespread use and potential for leaching from consumer products. Environmental exposure is a critical aspect of the human exposome, revealing complex interactions between environmental contaminants and potential health effects. Silicone wristbands (SWBs) have emerged as a novel and non-invasive sampling device for assessing personal external exposure. In this study, SWBs were used as a proxy to estimate personal dermal adsorption (EDdermal) to PLs and OPFRs in Belgian participants for one week; four morning urine samples were also collected and analyzed for estimated daily intake (EDI). The results of the SWBs samples showed that all the participants were exposed to these chemicals, and the exposure was found to be highest for the legacy and alternative plasticizers (LP and AP), followed by the legacy and emerging OPFRs (LOPFR and EOPFR). In urine samples, the highest levels were observed for metabolites of diethyl phthalate (DEP), di-isobutyl phthalate (DiBP) and di-n-butyl phthalate (DnBP) among LPs and di(2-ethylhexyl) terephthalate (DEHT) for APs. Outliers among the participants indicated that there were other sources of exposure that were not identified. Results showed a significant correlation between EDdermal and EDI for DiBP, tris (2-butoxyethyl) phosphate (TBOEP) and triphenyl phosphate (TPhP). These correlations indicated their suitability for predicting exposure via SWB monitoring for total chemical exposure. The results of this pilot study advance our understanding of SWB sampling and its relevance for predicting aggregate environmental chemical exposures, while highlighting the potential of SWBs as low-cost, non-invasive personal samplers for future research. This innovative approach has the potential to advance the assessment of environmental exposures and their impact on public health.


Asunto(s)
Exposición a Riesgos Ambientales , Monitoreo del Ambiente , Retardadores de Llama , Organofosfatos , Plastificantes , Siliconas , Retardadores de Llama/análisis , Plastificantes/análisis , Humanos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Exposición a Riesgos Ambientales/análisis , Organofosfatos/orina , Bélgica , Adulto , Contaminantes Ambientales/orina , Masculino , Femenino
15.
Int J Hyg Environ Health ; 257: 114346, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447259

RESUMEN

BACKGROUND: Studies on cognitive and neurodevelopmental outcomes have shown inconsistent results regarding the association with prenatal exposure to perfluoroalkyl substance (PFAS) and organochlorines. Assessment of mixture effects of correlated chemical exposures that persist in later life may contribute to the unbiased evaluation and understanding of dose-response associations in real-life exposures. METHODS: For a subset of the 4th Flemish Environment and Health Study (FLEHS), concentrations of four PFAS and six organochlorines were measured in respectively 99 and 153-160 cord plasma samples and 15 years later in adolescents' peripheral serum by Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS). Sustained and selective attention were measured at 14-15 years with the Continuous Performance Test (CPT) and Stroop Test as indicators of potential neurodevelopmental deficits. Quantile g-computation was applied to assess the joint associations between prenatal exposure to separate and combined groups of PFAS and organochlorines and performance in the CPT and Stroop Test at adolescence. Subsequently, individual effects of each chemical compound were analyzed in mixed effects models with two sets of covariates. Analytical data at birth and at the time of cognitive assessment allowed for off-setting postnatal exposure. RESULTS: In mixtures analysis, a simultaneous one-quantile increase in the natural log-transformed values of PFAS and organochlorines combined was associated with a decrease in the mean reaction time (RT) and the reaction time variability (RTV) in the CPT (ß = -15.54, 95% CI:-29.64, -1.45, and ß = -7.82, 95% CI: -14.97, -0.67 respectively) and for the mixture of PFAS alone with RT (ß = -11.94, 95% CI: -23.29, -0.60). In the single pollutant models, these results were confirmed for the association between perfluorohexanesulfonate (PFHxS) with RT (ß = -17.95, 95% CI = -33.35, -2.69) and hexachlorobenzene with RTV in the CPT (ß = -5.78, 95% CI: -10.39, -0.76). Furthermore, the participants with prenatal exposure above the limit of quantification for perfluorononanoic acid (PFNA) had a significantly shorter RT and RTV in the CPT (ß = -23.38, 95% CI: -41.55, -5.94, and ß = -9.54, 95% CI: -19.75, -0.43, respectively). CONCLUSION: Higher prenatal exposure to a PFAS mixture and a mixture of PFAS and organochlorines combined was associated with better sustained and selective attention during adolescence. The associations seemed to be driven by PFHxS and were not linked to exposure levels at the time of assessment.


Asunto(s)
Ácidos Alcanesulfónicos , Contaminantes Ambientales , Fluorocarburos , Efectos Tardíos de la Exposición Prenatal , Femenino , Embarazo , Recién Nacido , Humanos , Adolescente , Cromatografía Liquida , Espectrometría de Masas en Tándem , Cognición
16.
Curr Res Toxicol ; 6: 100164, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38550635

RESUMEN

Tris (1-chloro-2-propyl) phosphate (TCIPP) is one of the major organophosphate flame retardants present in the indoor and outdoor environment. Knowledge of biotransformation pathways is important to elucidate potential bioavailability and toxicity of TCIPP and to identify relevant biomarkers. This study aimed to identify TCIPP metabolites through in vitro human metabolism assays and finally to confirm these findings in urine samples from an occupationally exposed population to propose new biomarkers to accurately monitor exposure to TCIPP. TCIPP was incubated with human liver microsomes and human liver cytosol to identify Phase I and Phase II metabolites, by liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). Using a suspect-screening approach, the established biomarkers bis (1-chloro-2-propyl) hydrogen phosphate (BCIPP) and 1-hydroxy-2-propyl bis (1-chloro-2-propyl) phosphate (BCIPHIPP) were identified. In addition, carboxyethyl bis (1-chloro-2-propyl) phosphate (TCIPP-M1), bis (1-chloropropan-2-yl) (-oxopropan-2-yl) phosphate (TCIPP-M2) and 1-chloro-3-hydroxypropan-2-yl bis (1-chloropropan-2-yl) phosphate (TCIPP-M3) were identified. TCIPP-M2, an intermediate product, was not reported before in literature. In urine samples, apart from BCIPP and BCIPHIPP, TCIPP-M1 and TCIPP-M3 were identified for the first time. Interestingly, BCIPP showed the lowest detection frequency, likely due to the poor sensitivity for this compound. Therefore, TCIPP-M1 and TCIPP-M3 could serve as potential additional biomarkers to more efficiently monitor TCIPP exposure in humans.

18.
Innovation (Camb) ; 5(3): 100597, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38510068

RESUMEN

Obtaining clean energy is of prime importance for planetary health and sustainable development. We aimed to assess the association between residential energy transition and the risk of chronic respiratory diseases. Using data from the Global Health Observatory and Global Burden of Diseases, Injuries, and Risk Factors Study, we delineated the spatial distribution and temporal trends of the population using clean fuels for cooking at a global scale. In the China Health and Retirement Longitudinal Study, we performed rigorous and well-structured multistage analyses incorporating both cross-sectional and prospective data analyses to examine the associations between solid fuel use, residential energy transition, duration of solid fuel use, and the risk of chronic respiratory diseases. Despite great progress, huge disparities in access to clean energy persist globally. Residential energy transition was associated with a lower risk of chronic respiratory diseases. In the period of 2011-2013, compared with persistent solid fuel users, both participants who switched from solid to clean fuels (adjusted risk ratio [RR] 0.78, 95% confidence interval [CI] 0.62-0.98) and persistent clean fuel users (adjusted RR 0.71, 95% CI 0.57-0.89) had significantly lower risk of chronic respiratory diseases (p < 0.001 for trend). Consistent associations were observed in the period of 2011-2015 and 2011-2018. Household energy transition from solid to clean fuels could reduce the risk of chronic respiratory diseases. This is a valuable lesson for policy-makers and the general public to accelerate energy switching to alleviate the burden of chronic respiratory diseases and achieve health benefits, particularly in low- and middle-income countries.

19.
Environ Int ; 185: 108571, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38471262

RESUMEN

Isolated effects of single endocrine-disrupting chemicals (EDCs) on male reproductive health have been studied extensively, but their mixture effect remains unelucidated. Previous research has suggested that consuming diet enriched in omega-3 polyunsaturated fatty acids (PUFA) might be beneficial for reproductive health, whether omega-3 PUFA could moderate the effect of EDCs mixture on semen quality remains to be explored. In this study of 155 male recruited from a reproductive health center in China, we used targeted-exposomics to simultaneously measure 55 EDCs in the urine for exposure burden. Regression analyses were restricted to highly detected EDCs (≥55%, n = 34), and those with consistently elevated risk were further screened and brought into mixture effect models (Bisphenol A, ethyl paraben, methyl paraben [MeP], benzophenone-1 [BP1], benzophenone-3, mono(3-carboxypropyl) phthalate [MCPP]). Bayesian Kernel Machine Regression (BKMR) and quantile-based g-computation (QGC) models demonstrated that co-exposure to top-ranked EDCs was related to reduced sperm total (ß = -0.18, 95%CI: -0.29 - -0.07, P = 0.002) and progressive motility (ß = -0.27, 95%CI: -0.43 - -0.10, P = 0.002), but not to lower semen volume. BP1, MeP and MCPP were identified as the main effect driver for deteriorated sperm motion parameters using mixture model analyses. Seminal plasma fatty acid profiling showed that high omega-3 PUFA status, notably elevated docosapentaenoic acid (DPA, C22:5n-3) status, moderated the association between MCPP and sperm motion parameters (total motility: ß = 0.26, 95%CI: 0.01 - -0.51, Pinteraction = 0.047; progressive motility: ß = 0.64, 95%CI: 0.23 - 1.05, Pinteraction = 0.003). Co-exposure to a range of EDCs is mainly associated with deteriorated sperm quality, but to a lesser extent on sperm quantity, high seminal plasma DPA status might be protective against the effect. Our work emphasizes the importance of exposomic approach to assess chemical exposures and highlighted a new possible intervention target for mitigating the potential adverse effect of EDCs on semen quality.


Asunto(s)
Benzofenonas , Disruptores Endocrinos , Ácidos Grasos Omega-3 , Ácidos Grasos Insaturados , Masculino , Humanos , Semen , Análisis de Semen , Disruptores Endocrinos/toxicidad , Teorema de Bayes , Espermatozoides
20.
Sci Total Environ ; 926: 172057, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38552972

RESUMEN

Wastewater-based epidemiology (WBE) is proposed as a cost-effective approach to objectively monitor the antidepressant use but it requires more accurate correction factors (CF) than what had been used in previous studies. Amitriptyline is a popular prescription medicine for treating depression and nerve pain, which could be prone to misuse and need monitoring. The CF of amitriptyline employed in previous WBE studies varied from 10 to 100, leading to substantial disparities between WBE estimates and expected mass of antidepressants in wastewater. Hence, this study aimed to take amitriptyline as a case study and refine the CF by correlating mass loads measured in wastewater from 12.2 million inhabitants collected during the 2016 Census with corresponding annual sales data. The triangulation of WBE data and sales data resulted in a newly-derived CF of 7, which is significantly different from the CF values used in previous studies. The newly derived CF was applied to a secondary, multi-year (2017 to 2020) WBE dataset for validation against sales data in the same period, demonstrating the estimated amitriptyline use (380 ± 320 mg/day/1000 inhabitants) is consistent with sales data (450 ± 190 mg/day/1000 inhabitants). When we applied the new CF to previous studies, the wastewater consumption loads matched better to prescription data than previous WBE estimations. The refined CF of amitriptyline can be used in future WBE studies to improve the accuracy of the consumption estimates.


Asunto(s)
Amitriptilina , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales , Antidepresivos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA