Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
ACS Nano ; 18(21): 13484-13495, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38739725

RESUMEN

Biohybrid photocatalysts are composite materials that combine the efficient light-absorbing properties of synthetic materials with the highly evolved metabolic pathways and self-repair mechanisms of biological systems. Here, we show the potential of conjugated polymers as photosensitizers in biohybrid systems by combining a series of polymer nanoparticles with engineered Escherichia coli cells. Under simulated solar light irradiation, the biohybrid system consisting of fluorene/dibenzo [b,d]thiophene sulfone copolymer (LP41) and recombinant E. coli (i.e., a LP41/HydA BL21 biohybrid) shows a sacrificial hydrogen evolution rate of 3.442 mmol g-1 h-1 (normalized to polymer amount). It is over 30 times higher than the polymer photocatalyst alone (0.105 mmol g-1 h-1), while no detectable hydrogen was generated from the E. coli cells alone, demonstrating the strong synergy between the polymer nanoparticles and bacterial cells. The differences in the physical interactions between synthetic materials and microorganisms, as well as redox energy level alignment, elucidate the trends in photochemical activity. Our results suggest that organic semiconductors may offer advantages, such as solution processability, low toxicity, and more tunable surface interactions with the biological components over inorganic materials.


Asunto(s)
Escherichia coli , Hidrógeno , Polímeros , Escherichia coli/metabolismo , Hidrógeno/química , Hidrógeno/metabolismo , Polímeros/química , Polímeros/metabolismo , Catálisis , Tiofenos/química , Tiofenos/metabolismo , Nanopartículas/química , Procesos Fotoquímicos , Fluorenos/química , Fluorenos/metabolismo
2.
J Am Chem Soc ; 146(11): 7130-7134, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38441442

RESUMEN

The activity of molecular electrocatalysts depends on the interplay of electrolyte composition near the electrode surface, the composition and morphology of the electrode surface, and the electric field at the electrode-electrolyte interface. This interplay is challenging to study and often overlooked when assessing molecular catalyst activity. Here, we use surface specific vibrational sum frequency generation (VSFG) spectroscopy to study the solvent and potential dependent activation of Mo(bpy)(CO)4, a CO2 reduction catalyst, at a polycrystalline Au electrode. We find that the parent complex undergoes potential dependent reorientation at the electrode surface when a small amount of N-methyl-2-pyrrolidone (NMP) is present. This preactivates the complex, resulting in greater yields at less negative potentials, of the active electrocatalyst for CO2 reduction.

3.
Chem Sci ; 15(8): 2889-2897, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38404396

RESUMEN

The nature of the electrolyte cation is known to have a significant impact on electrochemical reduction of CO2 at catalyst|electrolyte interfaces. An understanding of the underlying mechanism responsible for catalytic enhancement as the alkali metal cation group is descended is key to guide catalyst development. Here, we use in situ vibrational sum frequency generation (VSFG) spectroscopy to monitor changes in the binding modes of the CO intermediate at the electrochemical interface of a polycrystalline Cu electrode during CO2 reduction as the electrolyte cation is varied. A CObridge mode is observed only when using Cs+, a cation that is known to facilitate CO2 reduction on Cu, supporting the proposed involvement of CObridge sites in CO coupling mechanisms during CO2 reduction. Ex situ measurements show that the cation dependent CObridge modes correlate with morphological changes of the Cu surface.

4.
J Phys Chem B ; 127(33): 7283-7290, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37556839

RESUMEN

Elucidating the photosynthetic processes that occur within the reaction center-light-harvesting 1 (RC-LH1) supercomplexes from purple bacteria is crucial for uncovering the assembly and functional mechanisms of natural photosynthetic systems and underpinning the development of artificial photosynthesis. Here, we examined excitation energy transfer of various RC-LH1 supercomplexes of Rhodobacter sphaeroides using transient absorption spectroscopy, coupled with lifetime density analysis, and studied the roles of the integral transmembrane polypeptides, PufX and PufY, in energy transfer within the RC-LH1 core complex. Our results show that the absence of PufX increases both the LH1 → RC excitation energy transfer lifetime and distribution due to the role of PufX in defining the interaction and orientation of the RC within the LH1 ring. While the absence of PufY leads to the conformational shift of several LH1 subunits toward the RC, it does not result in a marked change in the excitation energy transfer lifetime.


Asunto(s)
Proteínas del Complejo del Centro de Reacción Fotosintética , Rhodobacter sphaeroides , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Complejos de Proteína Captadores de Luz/química , Rhodobacter sphaeroides/metabolismo , Péptidos , Fotosíntesis , Transferencia de Energía , Proteínas Bacterianas/química
5.
J Am Chem Soc ; 145(28): 15078-15083, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37404139

RESUMEN

Pulsed electrolysis can significantly improve carbon dioxide reduction on metal electrodes, but the effect of short (millisecond to seconds) voltage steps on molecular electrocatalysts is largely unstudied. In this work, we investigate the effect pulse electrolysis has on the selectivity and stability of the homogeneous electrocatalyst [Ni(cyclam)]2+ at a carbon electrode. By tuning the potential and pulse duration, we achieve a significant improvement in CO Faradaic efficiencies (85%) after 3 h, double that of the system under potentiostatic conditions. The improved activity is due to in situ catalyst regeneration from an intermediate that occurs as part of the catalyst's degradation pathway. This study demonstrates the wider opportunity to apply pulsed electrolysis to molecular electrocatalysts to control activity and improve selectivity.

6.
Chem Sci ; 14(12): 3182-3189, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36970076

RESUMEN

To understand the mechanisms of water oxidation on materials such as hematite it is important that accurate measurements and models of the interfacial fields at the semiconductor liquid junction are developed. Here we demonstrate how electric field induced second harmonic generation (EFISHG) spectroscopy can be used to monitor the electric field across the space-charge and Helmholtz layers in a hematite electrode during water oxidation. We are able to identify the occurrence of Fermi level pinning at specific applied potentials which lead to a change in the Helmholtz potential. Through combined electrochemical and optical measurements we correlate these to the presence of surface trap states and the accumulation of holes (h+) during electrocatalysis. Despite the change in Helmholtz potential as h+ accumulate we find that a population model can be used to fit the electrocatalytic water oxidation kinetics with a transition between a first and third order regime with respect to hole concentration. Within these two regimes there are no changes in the rate constants for water oxidation, indicating that the rate determining step under these conditions does not involve electron/ion transfer, in-line with it being O-O bond formation.

7.
Chem Commun (Camb) ; 59(7): 944-947, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36597867

RESUMEN

We report a H2 evolving hybrid photocathode based on Sb2Se3 and a precious metal free molecular catalyst. Through the use of a high surface area TiO2 scaffold, we successfully increased the Ni molecular catalyst loading from 7.08 ± 0.43 to 45.76 ± 0.81 nmol cm-2, achieving photocurrents of 1.3 mA cm-2 at 0 V vs. RHE, which is 81-fold higher than the device without the TiO2 mesoporous layer.

8.
Nat Nanotechnol ; 18(3): 307-315, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36702952

RESUMEN

Molecular packing controls optoelectronic properties in organic molecular nanomaterials. Here we report a donor-acceptor organic molecule (2,6-bis(4-cyanophenyl)-4-(9-phenyl-9H-carbazol-3-yl)pyridine-3,5-dicarbonitrile) that exhibits two aggregate states in aqueous dispersions: amorphous nanospheres and ordered nanofibres with π-π molecular stacking. The nanofibres promote sacrificial photocatalytic H2 production (31.85 mmol g-1 h-1) while the nanospheres produce hydrogen peroxide (H2O2) (3.20 mmol g-1 h-1 in the presence of O2). This is the first example of an organic photocatalyst that can be directed to produce these two different solar fuels simply by changing the molecular packing. These different packings affect energy band levels, the extent of excited state delocalization, the excited state dynamics, charge transfer to O2 and the light absorption profile. We use a combination of structural and photophysical measurements to understand how this influences photocatalytic selectivity. This illustrates the potential to achieve multiple photocatalytic functionalities with a single organic molecule by engineering nanomorphology and solid-state packing.

9.
Chem Sci ; 13(20): 5988-5998, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35685808

RESUMEN

Sunlight-driven CO2 reduction to renewable fuels is a promising strategy towards a closed carbon cycle in a circular economy. For that purpose, colloidal quantum dots (QDs) have emerged as a versatile light absorber platform that offers many possibilities for surface modification strategies. Considerable attention has been focused on tailoring the local chemical environment of the catalytic site for CO2 reduction with chemical functionalities ranging from amino acids to amines, imidazolium, pyridines, and others. Here we show that dithiols, a class of organic compounds previously unexplored in the context of CO2 reduction, can enhance photocatalytic CO2 reduction on ZnSe QDs. A short dithiol (1,2-ethanedithiol) activates the QD surface for CO2 reduction accompanied by a suppression of the competing H2 evolution reaction. In contrast, in the presence of an immobilized Ni(cyclam) co-catalyst, a longer dithiol (1,6-hexanedithiol) accelerates CO2 reduction. 1H-NMR spectroscopy studies of the dithiol-QD surface interactions reveal a strong affinity of the dithiols for the QD surface accompanied by a solvation sphere governed by hydrophobic interactions. Control experiments with a series of dithiol analogues (monothiol, mercaptoalcohol) render the hydrophobic chemical environment unlikely as the sole contribution of the enhancement of CO2 reduction. Density functional theory (DFT) calculations provide a framework to rationalize the observed dithiol length dependent activity through the analysis of the non-covalent interactions between the dangling thiol moiety and the CO2 reduction intermediates at the catalytic site. This work therefore introduces dithiol capping ligands as a straightforward means to enhance CO2 reduction catalysis on both bare and co-catalyst modified QDs by engineering the particle's chemical environment.

10.
Angew Chem Int Ed Engl ; 61(34): e202207184, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-35699678

RESUMEN

Revealing how formation protocols influence the properties of the solid-electrolyte interphase (SEI) on Si electrodes is key to developing the next generation of Li-ion batteries. SEI understanding is, however, limited by the low-throughput nature of conventional characterisation techniques. Herein, correlative scanning electrochemical cell microscopy (SECCM) and shell-isolated nanoparticles for enhanced Raman spectroscopy (SHINERS) are used for combinatorial screening of the SEI formation under a broad experimental space (20 sets of different conditions with several repeats). This novel approach reveals the heterogeneous nature and dynamics of the SEI electrochemical properties and chemical composition on Si electrodes, which evolve in a characteristic manner as a function of cycle number. Correlative SECCM/SHINERS has the potential to screen thousands of candidate experiments on a variety of battery materials to accelerate the optimization of SEI formation methods, a key bottleneck in battery manufacturing.

11.
J Am Chem Soc ; 144(17): 7551-7556, 2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35451834

RESUMEN

The scaling-up of electrochemical CO2 reduction requires circumventing the CO2 loss as carbonates under alkaline conditions. Zero-gap cell configurations with a reverse-bias bipolar membrane (BPM) represent a possible solution, but the catalyst layer in direct contact with the acidic environment of a BPM usually leads to H2 evolution dominating. Here we show that using acid-tolerant Ni molecular electrocatalysts selective (>60%) CO2 reduction can be achieved in a zero-gap BPM device using a pure water and CO2 feed. At a higher current density (100 mA cm-2), CO selectivity decreases, but was still >30%, due to reversible product inhibition. This study demonstrates the importance of developing acid-tolerant catalysts for use in large-scale CO2 reduction devices.

12.
Angew Chem Int Ed Engl ; 61(26): e202201299, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35377540

RESUMEN

Polymer photocatalysts have received growing attention in recent years for photocatalytic hydrogen production from water. Most studies report hydrogen production with sacrificial electron donors, which is unsuitable for large-scale hydrogen energy production. Here we show that the palladium/iridium oxide-loaded homopolymer of dibenzo[b,d]thiophene sulfone (P10) facilitates overall water splitting to produce stoichiometric amounts of H2 and O2 for an extended period (>60 hours) after the system stabilized. These results demonstrate that conjugated polymers can act as single component photocatalytic systems for overall water splitting when loaded with suitable co-catalysts, albeit currently with low activities. Transient spectroscopy shows that the IrO2 co-catalyst plays an important role in the generation of the charge separated state required for water splitting, with evidence for fast hole transfer to the co-catalyst.

13.
Acc Chem Res ; 55(7): 955-965, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35285618

RESUMEN

The electrochemical reduction of CO2 provides a way to sustainably generate carbon-based fuels and feedstocks. Molecular CO2 reduction electrocatalysts provide tunable reaction centers offering an approach to control the selectivity of catalysis. Manganese carbonyl complexes, based on [Mn(bpy)(CO)3Br] and its derivatives (bpy = 2,2'-bipyridine), are particularly interesting due to their ease of synthesis and the use of a first-row earth-abundant transition metal. [Mn(bpy)(CO)3Br] was first shown to be an active and selective catalyst for reducing CO2 to CO in organic solvents in 2011. Since then, manganese carbonyl catalysts have been widely studied with numerous reports of their use as electrocatalysts and photocatalysts and studies of their mechanism.This class of Mn catalysts only shows CO2 reduction activity with the addition of weak Brønsted acids. Perhaps surprisingly, early reports showed increased turnover frequencies as the acid strength is increased without a loss in selectivity toward CO evolution. It may have been expected that the competing hydrogen evolution reaction could have led to lower selectivity. Inspired by these works we began to explore if the catalyst would work in protic solvents, namely, water, and to explore the pH range over which it can operate. Here we describe the early studies from our laboratory that first demonstrated the use of manganese carbonyl complexes in water and then go on to discuss wider developments on the use of these catalysts in water, highlighting their potential as catalysts for use in aqueous CO2 electrolyzers.Key to the excellent selectivity of these catalysts in the presence of Brønsted acids is a proton-assisted CO2 binding mechanism, where for the acids widely studied, lower pKa values actually favor CO2 binding over Mn-H formation, a precursor to H2 evolution. Here we discuss the wider literature before focusing on our own contributions in validating this previously proposed mechanism through the use of vibrational sum frequency generation (VSFG) spectroelectrochemistry. This allowed us to study [Mn(bpy)(CO)3Br] while it is at, or near, the electrode surface, which provided a way to identify new catalytic intermediates and also confirm that proton-assisted CO2 binding operates in both the "dimer" and primary (via [Mn(bpy)(CO)3]-) pathways. Understanding the mechanism of how these highly selective catalysts operate is important as we propose that the Mn complexes will be valuable models to guide the development of new proton/acid tolerant CO2 reduction catalysts.


Asunto(s)
Manganeso , Agua , Dióxido de Carbono/química , Manganeso/química , Oxidación-Reducción , Solventes , Agua/química
14.
Phytopathology ; 112(6): 1316-1322, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34982574

RESUMEN

The Pc54 oat line carries the crown rust resistance gene Pc54 and an unknown gene effective against powdery mildew. In this study, two recombinant inbred line (RIL) populations were developed to identify the genomic locations of the two genes and produce lists of molecular markers with a potential for marker-assisted selection. The RILs and parents were phenotyped for crown rust and powdery mildew in a controlled environment. They were also genotyped using the 6K Illumina Infinium iSelect oat single nucleotide polymorphism (SNP) chip. Multiple interval mapping placed Pc54 on the linkage group Mrg02 (chromosome 7D) and the novel powdery mildew quantitative trait locus (QTL) QPm.18 on Mrg18 (chromosome 1A) both in mapping and in the validating populations. A total of 9 and 31 significant molecular markers were identified linked with the Pc54 gene and QPm.18, respectively. Reactions to crown rust inoculations have justified separate identities of Pc54 from other genes and QTLs that have previously been reported on Mrg02 except for qPCRFd. Pm3 is the only powdery mildew resistance gene previously mapped on Mrg18. However, the pm3 differential line, Mostyn, was susceptible to the powdery mildew race used in this study, suggesting that Pm3 and QPm.18 are different genes. Determining the chromosomal locations of Pc54 and QPm.18 is helpful for better understanding of the molecular mechanism of resistance to crown rust and powdery mildew in oats. Furthermore, SNPs and single sequence repeats that are closely linked with the genes could be valuable for developing PCR-based molecular markers and facilitating the utilization of these genes in oat breeding programs.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Avena , Basidiomycota , Ascomicetos , Avena/genética , Basidiomycota/genética , Resistencia a la Enfermedad/genética , Grano Comestible/genética , Fitomejoramiento , Enfermedades de las Plantas/genética , Puccinia , Sitios de Carácter Cuantitativo/genética
15.
J Phys Chem Lett ; 12(44): 10899-10905, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34730969

RESUMEN

Polymer photocatalysts are a synthetically diverse class of materials that can be used for the production of solar fuels such as H2, but the underlying mechanisms by which they operate are poorly understood. Time-resolved vibrational spectroscopy provides a powerful structure-specific probe of photogenerated species. Here we report the use of time-resolved resonance Raman (TR3) spectroscopy to study the formation of polaron pairs and electron polarons in one of the most active linear polymer photocatalysts for H2 production, poly(dibenzo[b,d]thiophene sulfone), P10. We identify that polaron-pair formation prior to thermalization of the initially generated excited states is an important pathway for the generation of long-lived photoelectrons.

16.
Foods ; 10(10)2021 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-34681405

RESUMEN

The extent to which the quality and yield of plant varieties are influenced by the environment is important for their successful uptake by end users particularly as climatic fluctuations are resulting in environments that are highly variable from one growing season to another. The genotype-by-environment interaction (GEI) of milling quality and yield was studied using four winter oat varieties in multi-locational trials over 4 years in the U.K. Significant differences across the 22 environments were found between physical grain quality and composition as well as grain yield, with the environment having a significant effect on all of the traits measured. Grain yield was closely related to grain number m-2 whereas milling quality traits were related to grain size attributes. Considerable genotype by environment interaction was obtained for all grain quality traits and stability analysis revealed that the variety Mascani was the least sensitive to the environment for all milling quality traits measured whereas the variety Balado was the most sensitive. Examination of environmental conditions at specific within-year stages of crop development indicated that both temperature and rainfall during grain development were correlated with grain yield and ß-glucan content and with the ease of removing the hull (hullability).

18.
Faraday Discuss ; 230(0): 331-343, 2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34259680

RESUMEN

Imidazolium ionic liquids are potentially useful solvents for both carbon dioxide reduction conversion and capture. In particular electrocatalytic CO2 reduction has been shown to occur at low overpotentials using a 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIM][OTf]) and water mixed solvent. A limitation of such solvent systems is their viscosity, making it hard to maintain reasonable catalytic current densities without energy intensive stirring/agitation of the electrolyte. Here we explore the electrochemical reduction of CO2 at high pressures (0.1 to 5.1 MPa) and demonstrate a correlation between the volume of expansion of the ionic liquid and the achieved catalytic current density. The improved electrocatalytic behaviour is proposed to be due to both the increased bulk CO2 concentration and the improved mass transport properties of the gas-expanded ionic liquid. These initial studies at pressure represent a step towards realising an integrated CO2 capture and utilisation system based around a common ionic liquid.

20.
Food Chem ; 355: 129585, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33799237

RESUMEN

Oats (Avena sativa L.) are a healthy food, being high in dietary fibre (e.g. ß-glucans), antioxidants, minerals, and vitamins. Understanding the effect of variety and crop management on nutritional quality is important. The response of four oat varieties to increased nitrogen levels was investigated across multiple locations and years with respect to yield, grain quality and metabolites (assessed via GC- and LC- MS). A novel high-resolution UHPLC-PDA-MS/MS method was developed, providing improved metabolite enrichment, resolution, and identification. The combined phenotyping approach revealed that, amino acid levels were increased by nitrogen supplementation, as were total protein and nitrogen containing lipid levels, whereas health-beneficial avenanthramides were decreased. Although nitrogen addition significantly increased grain yield and ß-glucan content, supporting increasing the total nitrogen levels recommended within agricultural guidelines, oat varietal choice as well as negative impacts upon health beneficial secondary metabolites and the environmental burdens associated with nitrogen fertilisation, require further consideration.


Asunto(s)
Avena/metabolismo , Metaboloma , Nitrógeno/administración & dosificación , Espectrometría de Masas en Tándem/métodos , Antioxidantes/química , Avena/crecimiento & desarrollo , Cromatografía Líquida de Alta Presión , Análisis Discriminante , Grano Comestible/química , Grano Comestible/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Valor Nutritivo , Fenotipo , beta-Glucanos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA