Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39273325

RESUMEN

Cosmic radiation experienced during space travel may increase the risk of cognitive impairment. While simulated galactic cosmic radiation (GCRsim) has led to memory deficits in wildtype (WT) mice, it has not been investigated whether GCRsim in combination with genetic risk factors for Alzheimer's disease (AD) worsens memory further in aging mice. Here, we investigated the central nervous system (CNS) effects of 0 Gy (sham) or 0.75 Gy five-ion GCRsim or 2 Gy gamma radiation (IRR) in 14-month-old female and male APPNL-F/NL-F knock-in (KI) mice bearing humanized ApoE3 or ApoE4 (APP;E3F and APP;E4F). As travel to a specialized facility was required for irradiation, both traveled sham-irradiated C57BL/6J WT and KI mice and non-traveled (NT) KI mice acted as controls for potential effects of travel. Mice underwent four behavioral tests at 20 months of age and were euthanized for pathological and biochemical analyses 1 month later. Fecal samples were collected pre- and post-irradiation at four different time points. GCRsim seemed to impair memory in male APP;E3F mice compared to their sham counterparts. Travel tended to improve cognition in male APP;E3F mice and lowered total Aß in female and male APP;E3F mice compared to their non-traveled counterparts. Sham-irradiated male APP;E4F mice accumulated more fibrillar amyloid than their APP;E3F counterparts. Radiation exposure had only modest effects on behavior and brain changes, but travel-, sex-, and genotype-specific effects were seen. Irradiated mice had immediate and long-term differences in their gut bacterial composition that correlated to Alzheimer's disease phenotypes.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Cognición , Radiación Cósmica , Ratones Transgénicos , Animales , Femenino , Masculino , Radiación Cósmica/efectos adversos , Ratones , Cognición/efectos de la radiación , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Técnicas de Sustitución del Gen , Ratones Endogámicos C57BL , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Modelos Animales de Enfermedad , Factores Sexuales , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Humanos
2.
bioRxiv ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39131309

RESUMEN

There is a critical need to generate age- and sex-specific survival curves to characterize chronological aging consistently across nonhuman primates (NHP) used in biomedical research. Accurate measures of chronological aging are essential for inferences into genetic, demographic, and physiological variables driving differences in NHP lifespan within and between species. Understanding NHP lifespans is relevant to public health because unraveling the demographic, molecular, and clinical bases of health across the life course in translationally relevant NHP species is fundamentally important to the study of human aging. Data from more than 110,000 captive individual NHP were contributed by 15 major research institutions to generate sex-specific Kaplan-Meier survival curves using uniform methods in 12 translational aging models: Callithrix jacchus (common marmoset), Chlorocebus aethiops sabaeus (vervet/African green), Macaca fascicularis (cynomolgus macaque), M. fuscata (Japanese macaque), M. mulatta (rhesus macaque), M. nemestrina (pigtail macaque), M. radiata (bonnet macaque), Pan troglodytes spp. (chimpanzee), Papio hamadryas spp. (baboon), Plecturocebus cupreus (coppery titi monkey), Saguinus oedipus (cotton-top tamarin), and Saimiri spp. (squirrel monkey). After employing strict inclusion criteria, primary analysis results are based on 12,269 NHP that survived to adulthood and died of natural/health-related causes. A secondary analysis was completed for 32,616 NHP that died of any cause. For the primary analyses, we report ages of 25th, 50th, 75th, and 85th percentiles of survival, maximum observed ages, rates of survivorship, and sex-based differences captured by quantile regression models and Kolmogorov-Smirnov tests. Our findings show a pattern of reduced male survival among catarrhines (African and Asian primates), especially macaques, but not platyrrhines (Central and South American primates). For many species, median lifespans were lower than previously reported. An important consideration is that these analyses may offer a better reflection of healthspan than lifespan. Captive NHP used in research are typically euthanized for humane welfare reasons before their natural end of life, often after diagnosis of their first major disease requiring long-term treatment with reduced quality of life (e.g., endometriosis, cancer, osteoarthritis). Supporting the idea that these data are capturing healthspan, for several species typical age at onset of chronic disease is similar to the median lifespan estimates. This data resource represents the most comprehensive characterization of sex-specific lifespan and age-at-death distributions for 12 biomedically relevant species, to date. The results clarify the relationships among NHP ages and will provide a valuable resource for the aging research community, improving human-NHP age equivalencies, informing investigators of the expected survival rates of NHP assigned to studies, providing a metric for comparisons in future studies, and contributing to our understanding of the factors that drive lifespan differences within and among species.

3.
Adv Sci (Weinh) ; : e2309211, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119859

RESUMEN

Age is a prominent risk factor for cardiometabolic disease, often leading to heart structural and functional changes. However, precise molecular mechanisms underlying cardiac remodeling and dysfunction exclusively resulting from physiological aging remain elusive. Previous research demonstrated age-related functional alterations in baboons, analogous to humans. The goal of this study is to identify early cardiac molecular alterations preceding functional adaptations, shedding light on the regulation of age-associated changes. Unbiased transcriptomics of left ventricle samples are performed from female baboons aged 7.5-22.1 years (human equivalent ≈30-88 years). Weighted-gene correlation network and pathway enrichment analyses are performed, with histological validation. Modules of transcripts negatively correlated with age implicated declined metabolism-oxidative phosphorylation, tricarboxylic acid cycle, glycolysis, and fatty-acid ß-oxidation. Transcripts positively correlated with age suggested a metabolic shift toward glucose-dependent anabolic pathways, including hexosamine biosynthetic pathway (HBP). This shift is associated with increased glycosaminoglycan synthesis, modification, precursor synthesis via HBP, and extracellular matrix accumulation, verified histologically. Upregulated extracellular matrix-induced signaling coincided with glycosaminoglycan accumulation, followed by cardiac hypertrophy-related pathways. Overall, these findings revealed a transcriptional shift in metabolism favoring glycosaminoglycan accumulation through HBP before cardiac hypertrophy. Unveiling this metabolic shift provides potential targets for age-related cardiac diseases, offering novel insights into early age-related mechanisms.

4.
Genome Med ; 16(1): 94, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085949

RESUMEN

BACKGROUND: Previous studies have identified a diverse group of microbial taxa that differ between patients with multiple sclerosis (MS) and the healthy population. However, interpreting findings on MS-associated microbiota is challenging, as there is no true consensus. It is unclear whether there is gut microbiota commonly altered in MS across studies. METHODS: To answer this, we performed a meta-analysis based on the 16S rRNA gene sequencing data from seven geographically and technically diverse studies comprising a total of 524 adult subjects (257 MS and 267 healthy controls). Analysis was conducted for each individual study after reprocessing the data and also by combining all data together. The blocked Wilcoxon rank-sum test and linear mixed-effects regression were used to identify differences in microbial composition and diversity between MS and healthy controls. Network analysis was conducted to identify bacterial correlations. A leave-one-out sensitivity analysis was performed to ensure the robustness of the findings. RESULTS: The microbiome community structure was significantly different between studies. Re-analysis of data from individual studies revealed a lower relative abundance of Prevotella in MS across studies, compared to controls. Meta-analysis found that although alpha and beta diversity did not differ between MS and controls, a higher abundance of Actinomyces and a lower abundance of Faecalibacterium were reproducibly associated with MS. Additionally, network analysis revealed that the recognized negative Bacteroides-Prevotella correlation in controls was disrupted in patients with MS. CONCLUSIONS: Our meta-analysis identified common gut microbiota associated with MS across geographically and technically diverse studies.


Asunto(s)
Microbioma Gastrointestinal , Esclerosis Múltiple , ARN Ribosómico 16S , Humanos , Esclerosis Múltiple/microbiología , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , Bacterias/genética , Bacterias/clasificación , Adulto , Masculino , Femenino , Estudios de Casos y Controles
6.
Brain Commun ; 6(4): fcae147, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39045090

RESUMEN

The associations between human concussions and subsequent sequelae of chronic neuropsychiatric and cardiovascular diseases such as hypertension have been reported; however, little is known about the underlying biological processes. We hypothesized that dietary changes, including a high-salt diet, disrupt the bidirectional gut-brain axis, resulting in worsening neuroinflammation and emergence of cardiovascular and behavioural phenotypes in the chronic period after repetitive closed head injury in adolescent mice. Adolescent mice were subjected to three daily closed head injuries, recovered for 12 weeks and then maintained on a high-salt diet or a normal diet for an additional 12 weeks. Experimental endpoints were haemodynamics, behaviour, microglial gene expression (bulk RNA sequencing), brain inflammation (brain tissue quantitative PCR) and microbiome diversity (16S RNA sequencing). High-salt diet did not affect systemic blood pressure or heart rate in sham or injured mice. High-salt diet increased anxiety-like behaviour in injured mice compared to sham mice fed with high-salt diet and injured mice fed with normal diet. Increased anxiety in injured mice that received a high-salt diet was associated with microgliosis and a proinflammatory microglial transcriptomic signature, including upregulation in interferon-gamma, interferon-beta and oxidative stress-related pathways. Accordingly, we found upregulation of tumour necrosis factor-alpha and interferon-gamma mRNA in the brain tissue of high salt diet-fed injured mice. High-salt diet had a larger effect on the gut microbiome composition than repetitive closed head injury. Increases in gut microbes in the families Lachnospiraceae, Erysipelotrichaceae and Clostridiaceae were positively correlated with anxiety-like behaviours. In contrast, Muribaculaceae, Acholeplasmataceae and Lactobacillaceae were negatively correlated with anxiety in injured mice that received a high-salt diet, a time-dependent effect. The findings suggest that high-salt diet, administered after a recovery period, may affect neurologic outcomes following mild repetitive head injury, including the development of anxiety. This effect was linked to microbiome dysregulation and an exacerbation of microglial inflammation, which may be physiological targets to prevent behavioural sequelae in the chronic period after mild repetitive head injury. The data suggest an important contribution of diet in determining long-term outcomes after mild repetitive head injury.

7.
Mucosal Immunol ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38925529

RESUMEN

Dietary proteins are taken up by intestinal dendritic cells (DCs), cleaved into peptides, loaded to major histocompatibility complexes, and presented to T cells to generate an immune response. Amino acid (AA)-diets do not have the same effects because AAs cannot bind to major histocompatibility complex to activate T cells. Here, we show that impairment in regulatory T cell generation and loss of tolerance in mice fed a diet lacking whole protein is associated with major transcriptional changes in intestinal DCs including downregulation of genes related to DC maturation, activation and decreased gene expression of immune checkpoint molecules. Moreover, the AA-diet had a profound effect on microbiome composition, including an increase in Akkermansia muciniphilia and Oscillibacter and a decrease in Lactococcus lactis and Bifidobacterium. Although microbiome transfer experiments showed that AA-driven microbiome modulates intestinal DC gene expression, most of the unique transcriptional change in DC was linked to the absence of whole protein in the diet. Our findings highlight the importance of dietary proteins for intestinal DC function and mucosal tolerance.

8.
Nat Commun ; 15(1): 3872, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719797

RESUMEN

The gut microbiota and microglia play critical roles in Alzheimer's disease (AD), and elevated Bacteroides is correlated with cerebrospinal fluid amyloid-ß (Aß) and tau levels in AD. We hypothesize that Bacteroides contributes to AD by modulating microglia. Here we show that administering Bacteroides fragilis to APP/PS1-21 mice increases Aß plaques in females, modulates cortical amyloid processing gene expression, and down regulates phagocytosis and protein degradation microglial gene expression. We further show that administering Bacteroides fragilis to aged wild-type male and female mice suppresses microglial uptake of Aß1-42 injected into the hippocampus. Depleting murine Bacteroidota with metronidazole decreases amyloid load in aged 5xFAD mice, and activates microglial pathways related to phagocytosis, cytokine signaling, and lysosomal degradation. Taken together, our study demonstrates that members of the Bacteroidota phylum contribute to AD pathogenesis by suppressing microglia phagocytic function, which leads to impaired Aß clearance and accumulation of amyloid plaques.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Modelos Animales de Enfermedad , Ratones Transgénicos , Microglía , Fagocitosis , Placa Amiloide , Animales , Microglía/metabolismo , Microglía/efectos de los fármacos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/microbiología , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Placa Amiloide/metabolismo , Femenino , Ratones , Masculino , Bacteroides fragilis/metabolismo , Microbioma Gastrointestinal , Humanos , Ratones Endogámicos C57BL , Hipocampo/metabolismo , Hipocampo/patología
9.
bioRxiv ; 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38746316

RESUMEN

We previously demonstrated in baboons that maternal undernutrition (MUN), achieved by 70 % of control nutrition, impairs fetal liver function, but long-term changes associated with aging in this model remain unexplored. Here, we assessed clinical phenotypes of liver function, mitochondrial bioenergetics, and protein abundance in adult male and female baboons exposed to MUN during pregnancy and lactation and their control counterparts. Plasma liver enzymes were assessed enzymatically. Liver glycogen, choline, and lipid concentrations were quantified by magnetic resonance spectroscopy. Mitochondrial respiration in primary hepatocytes under standard culture conditions and in response to metabolic (1 mM glucose) and oxidative (100 µM H2O2) stress were assessed with Seahorse XFe96. Hepatocyte mitochondrial membrane potential (MMP) and protein abundance were determined by tetramethylrhodamine ethyl ester staining and immunoblotting, respectively. Liver enzymes and metabolite concentrations were largely unaffected by MUN, except for higher aspartate aminotransferase levels in MUN offspring when male and female data were combined. Oxygen consumption rate, extracellular acidification rate, and MMP were significantly higher in male MUN offspring relative to control animals under standard culture. However, in females, cellular respiration was similar in control and MUN offspring. In response to low glucose challenge, only control male hepatocytes were resistant to low glucose-stimulated increase in basal and ATP-linked respiration. H2O2 did not affect hepatocyte mitochondrial respiration. Protein markers of mitochondrial respiratory chain subunits, biogenesis, dynamics, and antioxidant enzymes were unchanged. Male-specific increases in mitochondrial bioenergetics in MUN offspring may be associated with increased energy demand in these animals. The similarity in systemic liver parameters suggests that changes in hepatocyte bioenergetics capacity precede detectable circulatory hepatic defects in MUN offspring and that the mitochondria may be an orchestrator of liver programming outcome.

10.
Geroscience ; 46(5): 4443-4459, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38607532

RESUMEN

Biological resilience, broadly defined as the ability to recover from an acute challenge and return to homeostasis, is of growing importance to the biology of aging. At the cellular level, there is variability across tissue types in resilience and these differences are likely to contribute to tissue aging rate disparities. However, there are challenges in addressing these cell-type differences at regional, tissue, and subject level. To address this question, we established primary cells from aged male and female baboons between 13.3 and 17.8 years spanning across different tissues, tissue regions, and cell types including (1) fibroblasts from skin and from the heart separated into the left ventricle (LV), right ventricle (RV), left atrium (LA), and right atrium (RA); (2) astrocytes from the prefrontal cortex and hippocampus; and (3) hepatocytes. Primary cells were characterized by their cell surface markers and their cellular respiration was assessed with Seahorse XFe96. Cellular resilience was assessed by modifying a live-cell imaging approach; we previously reported that monitors proliferation of dividing cells following response and recovery to oxidative (50 µM-H2O2), metabolic (1 mM-glucose), and proteostasis (0.1 µM-thapsigargin) stress. We noted significant differences even among similar cell types that are dependent on tissue source and the diversity in cellular response is stressor-specific. For example, astrocytes had a higher oxygen consumption rate and exhibited greater resilience to oxidative stress (OS) than both fibroblasts and hepatocytes. RV and RA fibroblasts were less resilient to OS compared with LV and LA, respectively. Skin fibroblasts were less impacted by proteostasis stress compared to astrocytes and cardiac fibroblasts. Future studies will test the functional relationship of these outcomes to the age and developmental status of donors as potential predictive markers.


Asunto(s)
Envejecimiento , Astrocitos , Metabolismo Energético , Fibroblastos , Hepatocitos , Papio , Animales , Fibroblastos/metabolismo , Astrocitos/metabolismo , Femenino , Masculino , Envejecimiento/fisiología , Envejecimiento/metabolismo , Metabolismo Energético/fisiología , Hepatocitos/metabolismo , Mitocondrias/metabolismo , Células Cultivadas
11.
Am J Primatol ; 86(7): e23630, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38655843

RESUMEN

The marmoset is a fundamental nonhuman primate model for the study of aging, neurobiology, and many other topics. Genetic management of captive marmoset colonies is complicated by frequent chimerism in the blood and other tissues, a lack of tools to enable cost-effective, genome-wide interrogation of variation, and historic mergers and migrations of animals between colonies. We implemented genotype-by-sequencing (GBS) of hair follicle derived DNA (a minimally chimeric DNA source) of 82 marmosets housed at the Southwest National Primate Research Center (SNPRC). Our primary goals were the genetic characterization of our marmoset population for pedigree verification and colony management and to inform the scientific community of the functional genetic makeup of this valuable resource. We used the GBS data to reconstruct the genetic legacy of recent mergers between colonies, to identify genetically related animals whose relationships were previously unknown due to incomplete pedigree information, and to show that animals in the SNPRC colony appear to exhibit low levels of inbreeding. Of the >99,000 single-nucleotide variants (SNVs) that we characterized, >9800 are located within gene regions known to harbor pathogenic variants of clinical significance in humans. Overall, we show the combination of low-resolution (sparse) genotyping using hair follicle DNA is a powerful strategy for the genetic management of captive marmoset colonies and for identifying potential SNVs for the development of biomedical research models.


Asunto(s)
Callithrix , Genotipo , Linaje , Animales , Callithrix/genética , Masculino , Femenino , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Endogamia , Folículo Piloso , Técnicas de Genotipaje/métodos , Técnicas de Genotipaje/veterinaria
12.
Cell Genom ; 4(3): 100509, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38430910

RESUMEN

Steady-state expression quantitative trait loci (eQTLs) explain only a fraction of disease-associated loci identified through genome-wide association studies (GWASs), while eQTLs involved in gene-by-environment (GxE) interactions have rarely been characterized in humans due to experimental challenges. Using a baboon model, we found hundreds of eQTLs that emerge in adipose, liver, and muscle after prolonged exposure to high dietary fat and cholesterol. Diet-responsive eQTLs exhibit genomic localization and genic features that are distinct from steady-state eQTLs. Furthermore, the human orthologs associated with diet-responsive eQTLs are enriched for GWAS genes associated with human metabolic traits, suggesting that context-responsive eQTLs with more complex regulatory effects are likely to explain GWAS hits that do not seem to overlap with standard eQTLs. Our results highlight the complexity of genetic regulatory effects and the potential of eQTLs with disease-relevant GxE interactions in enhancing the understanding of GWAS signals for human complex disease using non-human primate models.


Asunto(s)
Dieta Alta en Grasa , Estudio de Asociación del Genoma Completo , Estudio de Asociación del Genoma Completo/métodos , Dieta Alta en Grasa/efectos adversos , Regulación de la Expresión Génica , Sitios de Carácter Cuantitativo/genética , Fenotipo
13.
bioRxiv ; 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38370705

RESUMEN

Biological resilience, broadly defined as ability to recover from acute challenge and return to homeostasis, is of growing importance to the biology of aging. At the cellular level, there is variability across tissue types in resilience and these differences likely to contribute to tissue aging rate disparities. However, there are challenges in addressing these cell-type differences at regional, tissue and subject level. To address this question, we established primary cells from aged male and female baboons between 13.3-17.8 years spanning across different tissues, tissue regions, and cell types including: (1) fibroblasts from skin and from heart separated into left ventricle (LV), right ventricle (RV), left atrium (LA) and right atrium (RA), (2) astrocytes from the prefrontal cortex and hippocampus and (3) hepatocytes. Primary cells were characterized by their cell surface markers and their cellular respiration assessed with Seahorse XFe96. Cellular resilience was assessed by modifying a live-cell imaging approach we previously reported that monitors proliferation of dividing cells following response and recovery to oxidative (50µM-H2O2), metabolic (1mM-glucose) and proteostasis (0.1µM-thapsigargin) stress. We noted significant differences even among similar cell types that are dependent on tissue source and the diversity in cellular response is stressor specific. For example, astrocytes were more energetic and exhibited greater resilience to oxidative stress (OS) than both fibroblasts and hepatocytes. RV and RA fibroblasts were less resilient to OS compared with LV and LA respectively. Skin fibroblasts were less impacted by proteostasis stress compared to astrocytes and cardiac fibroblasts. Future studies will test the functional relationship of these outcomes to age and developmental status of donors as potential predictive markers.

14.
Geroscience ; 46(3): 3405-3417, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38311700

RESUMEN

Debate exists on life-course adrenocortical zonal function trajectories. Rapid, phasic blood steroid concentration changes, such as circadian rhythms and acute stress responses, complicate quantification. To avoid pitfalls and account for life-stage changes in adrenocortical activity indices, we quantified zonae fasciculata (ZF) and reticularis (ZR) across the life-course, by immunohistochemistry of key regulatory and functional proteins. In 28 female baboon adrenals (7.5-22.1 years), we quantified 12 key proteins involved in cell metabolism, division, proliferation, steroidogenesis (including steroid acute regulatory protein, StAR), oxidative stress, and glucocorticoid and mitochondrial function. Life-course abundance of ten ZF proteins decreased with age. Cell cycle inhibitor and oxidative stress markers increased. Seven of the 12 proteins changed in the same direction for ZR and ZF. Importantly, ZF StAR decreased, while ZR StAR was unchanged. Findings indicate ZF function decreased, and less markedly ZR function, with age. Causes and aging consequences of these changes remain to be determined.


Asunto(s)
Zona Fascicular , Zona Reticular , Femenino , Humanos , Zona Reticular/metabolismo , Zona Fascicular/metabolismo , Acontecimientos que Cambian la Vida , Esteroides/metabolismo
15.
Brain Behav Immun ; 117: 242-254, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38281671

RESUMEN

Intestinal γδ T cells play an important role in shaping the gut microbiota, which is critical not only for maintaining intestinal homeostasis but also for controlling brain function and behavior. Here, we found that mice deficient for γδ T cells (γδ-/-) developed an abnormal pattern of repetitive/compulsive (R/C) behavior, which was dependent on the gut microbiota. Colonization of WT mice with γδ-/- microbiota induced R/C behavior whereas colonization of γδ-/- mice with WT microbiota abolished the R/C behavior. Moreover, γδ-/- mice had elevated levels of the microbial metabolite 3-phenylpropanoic acid in their cecum, which is a precursor to hippurate (HIP), a metabolite we found to be elevated in the CSF. HIP reaches the striatum and activates dopamine type 1 (D1R)-expressing neurons, leading to R/C behavior. Altogether, these data suggest that intestinal γδ T cells shape the gut microbiota and their metabolites and prevent dysfunctions of the striatum associated with behavior modulation.


Asunto(s)
Microbioma Gastrointestinal , Hipuratos , Linfocitos T , Animales , Ratones , Cuerpo Estriado , Neuronas , Conducta Compulsiva
16.
Sex Transm Infect ; 100(1): 10-16, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-37918916

RESUMEN

OBJECTIVES: Despite strengthening HIV prevention with the introduction of pre-exposure prophylaxis (PrEP), STI services have remained relatively unchanged and the standard of care remains syndromic management. We used a discrete choice experiment to investigate service users' preferences for the diagnosis and treatment of STIs in South Africa. METHODS: Between 1 March 2021 and 20 April 2021, a cross-sectional online questionnaire hosted on REDCap was administered through access links sent to WhatsApp support groups for HIV PrEP users and attendees of two primary healthcare clinics and two mobile facilities in the Eastern Cape and Gauteng provinces aged between 18 and 49 years. Participants either self-completed the questionnaire or received support from a research assistant. We used a conditional logit model for the initial analysis and latent class model (LCM) to establish class memberships, with results displayed as ORs and probabilities. RESULTS: We enrolled 496 individuals; the majority were female (69%) and <30 years (74%). The LCM showed two distinct groups. The first group, comprising 68% of the participants, showed a strong preference for self-sampling compared with no sampling (OR 2.16, 95% CI 1.62 to 2.88). A clinic follow-up appointment for treatment was less preferable to same-day treatment (OR 0.78, 95% CI 0.63 to 0.95). Contact slip from index patient (OR 0.86, 95% CI 0.76 to 0.96) and healthcare professional (HCP)-initiated partner notification (OR 0.63, 95% CI 0.55 to 0.73) were both less preferable than expedited partner treatment (EPT). The second group included 32% of participants with a lower preference for self-sampling compared with no sampling (OR 0.65, 95% CI 0.41 to 1.04). There was no treatment option that was significantly different from the others; however, there was a strong preference for HCP-initiated partner notification to EPT (OR 1.53, 95% CI 1.10 to 2.12). CONCLUSIONS: Our results suggest that service users preferred STI testing prior to treatment, with the majority preferring self-taken samples and receiving aetiology-based treatment on the same day.


Asunto(s)
Infecciones por VIH , Profilaxis Pre-Exposición , Enfermedades de Transmisión Sexual , Humanos , Femenino , Masculino , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Sudáfrica/epidemiología , Estudios Transversales , Enfermedades de Transmisión Sexual/diagnóstico , Enfermedades de Transmisión Sexual/tratamiento farmacológico , Enfermedades de Transmisión Sexual/epidemiología , Infecciones por VIH/diagnóstico , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/epidemiología
17.
Pilot Feasibility Stud ; 9(1): 192, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001523

RESUMEN

BACKGROUND: Despite family carepartners of individuals post-stroke experiencing high levels of strain and reduced quality of life, stroke rehabilitation interventions rarely address carepartner well-being or offer training to support their engagement in therapeutic activities. Our group has developed creative intervention approaches to support families during stroke recovery, thereby improving physical and psychosocial outcomes for both carepartners and stroke survivors. The purpose of this study is to test the feasibility of an adapted, home-based intervention (Carepartner Collaborative Integrative Therapy for Gait-CARE-CITE-Gait) designed to facilitate positive carepartner involvement during home-based training targeting gait and mobility. METHODS: This two-phased design will determine the feasibility of CARE-CITE-Gait, a novel intervention that leverages principles from our previous carepartner-focused upper extremity intervention. During the 4-week CARE-CITE-Gait intervention, carepartners review online video-based modules designed to illustrate strategies for an autonomy-supportive environment during functional mobility task practice, and the study team completes two 2-h home visits for dyad collaborative goal setting. In phase I, content validity, usability, and acceptability of the CARE-CITE-Gait modules will be evaluated by stroke rehabilitation content experts and carepartners. In phase II, feasibility (based on measures of recruitment, retention, intervention adherence, and safety) will be measured. Preliminary effects of the CARE-CITE-Gait will be gathered using a single-group, quasi-experimental design with repeated measures (two baseline visits 1 week apart, posttest, and 1-month follow-up) with 15 carepartner and stroke survivor dyads. Outcome data collectors will be blinded. Outcomes include psychosocial variables (family conflict surrounding stroke recovery, strain, autonomy support, and quality of life) collected from carepartners and measures of functional mobility, gait speed, stepping activity, and health-related quality of life collected from stroke survivors. DISCUSSION: The findings of the feasibility testing and preliminary data on the effects of CARE-CITE-Gait will provide justification and information to guide a future definitive randomized clinical trial. The knowledge gained from this study will enhance our understanding of and aid the development of rehabilitation approaches that address both carepartner and stroke survivor needs during the stroke recovery process. TRIAL REGISTRATION: ClinicalTrials.gov, NCT05257928. Registered 25 February 2022. TRIAL STATUS: This trial was registered on ClinicalTrials.gov (NCT05257928) on March 25, 2022. Recruitment of participants was initiated on May 18, 2022.

18.
bioRxiv ; 2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-38014295

RESUMEN

Age is a prominent risk factor for cardiometabolic disease, and often leads to heart structural and functional changes. However, precise molecular mechanisms underlying cardiac remodeling and dysfunction resulting from physiological aging per se remain elusive. Understanding these mechanisms requires biological models with optimal translation to humans. Previous research demonstrated that baboons undergo age-related reduction in ejection fraction and increased heart sphericity, mirroring changes observed in humans. The goal of this study was to identify early cardiac molecular alterations that precede functional adaptations, shedding light on the regulation of age-associated changes. We performed unbiased transcriptomics of left ventricle (LV) samples from female baboons aged 7.5-22.1 years (human equivalent ~30-88 years). Weighted-gene correlation network and pathway enrichment analyses were performed to identify potential age-associated mechanisms in LV, with histological validation. Myocardial modules of transcripts negatively associated with age were primarily enriched for cardiac metabolism, including oxidative phosphorylation, tricarboxylic acid cycle, glycolysis, and fatty-acid ß-oxidation. Transcripts positively correlated with age suggest upregulation of glucose uptake, pentose phosphate pathway, and hexosamine biosynthetic pathway (HBP), indicating a metabolic shift towards glucose-dependent anabolic pathways. Upregulation of HBP commonly results in increased glycosaminoglycan precursor synthesis. Transcripts involved in glycosaminoglycan synthesis, modification, and intermediate metabolism were also upregulated in older animals, while glycosaminoglycan degradation transcripts were downregulated with age. These alterations would promote glycosaminoglycan accumulation, which was verified histologically. Upregulation of extracellular matrix (ECM)-induced signaling pathways temporally coincided with glycosaminoglycan accumulation. We found a subsequent upregulation of cardiac hypertrophy-related pathways and an increase in cardiomyocyte width. Overall, our findings revealed a transcriptional shift in metabolism from catabolic to anabolic pathways that leads to ECM glycosaminoglycan accumulation through HBP prior to upregulation of transcripts of cardiac hypertrophy-related pathways. This study illuminates cellular mechanisms that precede development of cardiac hypertrophy, providing novel potential targets to remediate age-related cardiac diseases.

19.
J Adolesc Health ; 73(6S): S67-S72, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37953011

RESUMEN

South Africa has a high incidence of human immunodeficiency virus and sexually transmitted infections (STIs), particularly among adolescent girls and young women. National and global guidelines recommend varied strategies for integrating STI and pre-exposure prophylaxis (PrEP) services. PURPOSE: This paper describes the implementation of a syndromic compared to an etiological approach to STI integration within PrEP services in South Africa. METHODS: We analysed program data from eight fixed and four mobile clinics to describe a cascade of STI care and integration of syndromic management among clients accessing PrEP services. Diagnostic testing was conducted in a subset of clients to determine the prevalence of STIs and estimate the burden of disease missed using a syndromic approach. RESULTS: Between December 2018 and December 2021, 22,505 clients sought services and a high proportion (92.9%) was screened for STI symptoms. Of these, 9% of females and 3% of males had symptoms and 89.5% had recorded treatment. In a subset of PrEP clients (406 females, 70 males) screened through laboratory testing, chlamydia was identified in 25.7% of female and 20.0% of male samples, gonorrhea in 14.1% of female and 18.6% of male samples, and syphilis in 2.3% of female and 1.4% of male samples. Highest prevalence was found among females aged 18-20 years. DISCUSSION: Syndromic STI screening and management can be integrated into routine PrEP service delivery and can identify symptomatic STIs, but misses asymptomatic infections. PrEP clients have a high prevalence of treatable STIs. Etiologic approaches can identify more infections than syndromic screening, but cheap point-of-care tests are needed.


Asunto(s)
Infecciones por VIH , Profilaxis Pre-Exposición , Enfermedades de Transmisión Sexual , Femenino , Masculino , Adolescente , Humanos , Infecciones por VIH/epidemiología , Infecciones por VIH/prevención & control , VIH , Sudáfrica/epidemiología , Enfermedades de Transmisión Sexual/epidemiología , Enfermedades de Transmisión Sexual/prevención & control , Homosexualidad Masculina
20.
J Adolesc Health ; 73(6S): S73-S80, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37953012

RESUMEN

PURPOSE: Poor mental health is associated with sexual and reproductive health (SRH) risks, including human immunodeficiency virus (HIV) and pre-exposure prophylaxis discontinuation. Adolescents and young people (AYP) are vulnerable to HIV and depression. This paper describes the prevalence and severity of depression and associated factors in AYP accessing SRH services in South Africa. METHODS: A cross-sectional analysis of enrollment data (January 2019 to December 2021) from a cohort of individuals receiving pre-exposure prophylaxis services at eight clinics in three provinces in South Africa was conducted. Females (n = 1,074) and males (n = 231) aged 15-24 years were included. Interviewer-administered questionnaires were conducted, and the prevalence and severity of depression assessed using the Patient Health Questionnaire-9. Multivariate analysis was used to identify factors associated with depression. RESULTS: Over 40% of participants had experienced any depression symptoms (43.7% of females, 38.5% of males). For males, experiencing intimate partner violence was the only predictor of depression symptoms (adjusted odds ratio (AOR) 8.81, 95% confidence intervals (CI) 1.03-75.44). For females, living with both parents (AOR 1.70, 95% CI 1.15-2.51), having transactional sex (AOR 1.63, 95% CI 1.00-2.65), experiencing any intimate partner violence (AOR 1.96, 95% CI 1.34-2.89), and using drugs (AOR 1.78, 95% CI 1.03-3.11) were all positively associated with depression symptoms. Resilience was a protective factor against depression symptoms for both sexes (males: AOR 0.96, 95% CI 0.93-0.98; females: AOR 0.96, 95% CI 0.95-0.97). DISCUSSION: There is a high burden of depression among AYP accessing SRH services in South Africa. Mental health screening should be integrated into SRH and HIV prevention programs for AYP.


Asunto(s)
Infecciones por VIH , Masculino , Femenino , Humanos , Adulto Joven , Adolescente , Infecciones por VIH/epidemiología , Infecciones por VIH/prevención & control , Infecciones por VIH/psicología , Salud Reproductiva , Salud Mental , Sudáfrica/epidemiología , Estudios Transversales , Conducta Sexual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA