Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Nat Commun ; 14(1): 7478, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37978176

RESUMEN

Nucleoid associated proteins (NAPs) maintain the architecture of bacterial chromosomes and regulate gene expression. Thus, their role as transcription factors may involve three-dimensional chromosome re-organisation. While this model is supported by in vitro studies, direct in vivo evidence is lacking. Here, we use RT-qPCR and 3C-qPCR to study the transcriptional and architectural profiles of the H-NS (histone-like nucleoid structuring protein)-regulated, osmoresponsive proVWX operon of Escherichia coli at different osmolarities and provide in vivo evidence for transcription regulation by NAP-mediated chromosome re-modelling in bacteria. By consolidating our in vivo investigations with earlier in vitro and in silico studies that provide mechanistic details of how H-NS re-models DNA in response to osmolarity, we report that activation of proVWX in response to a hyperosmotic shock involves the destabilization of H-NS-mediated bridges anchored between the proVWX downstream and upstream regulatory elements (DRE and URE), and between the DRE and ygaY that lies immediately downstream of proVWX. The re-establishment of these bridges upon adaptation to hyperosmolarity represses the operon. Our results also reveal additional structural features associated with changes in proVWX transcript levels such as the decompaction of local chromatin upstream of the operon, highlighting that further complexity underlies the regulation of this model operon. H-NS and H-NS-like proteins are wide-spread amongst bacteria, suggesting that chromosome re-modelling may be a typical feature of transcriptional control in bacteria.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Cromatina/metabolismo , Regulación Bacteriana de la Expresión Génica , Transcripción Genética , Operón/genética
2.
Nucleic Acids Res ; 50(2): e10, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34734265

RESUMEN

The interplay between three-dimensional chromosome organisation and genomic processes such as replication and transcription necessitates in vivo studies of chromosome dynamics. Fluorescent organic dyes are often used for chromosome labelling in vivo. The mode of binding of these dyes to DNA cause its distortion, elongation, and partial unwinding. The structural changes induce DNA damage and interfere with the binding dynamics of chromatin-associated proteins, consequently perturbing gene expression, genome replication, and cell cycle progression. We have developed a minimally-perturbing, genetically encoded fluorescent DNA label consisting of a (photo-switchable) fluorescent protein fused to the DNA-binding domain of H-NS - a bacterial nucleoid-associated protein. We show that this DNA label, abbreviated as HI-NESS (H-NS-based indicator for nucleic acid stainings), is minimally-perturbing to genomic processes and labels chromosomes in eukaryotic cells in culture, and in zebrafish embryos with preferential binding to AT-rich chromatin.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bioensayo/métodos , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Coloración y Etiquetado/métodos , Animales , Proteínas Bacterianas/genética , Línea Celular , Clonación Molecular , Replicación del ADN , ADN Bacteriano/química , Proteínas de Unión al ADN/genética , Colorantes Fluorescentes , Expresión Génica , Vectores Genéticos , Microscopía Fluorescente
3.
Exp Cell Res ; 309(2): 390-6, 2005 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-16040027

RESUMEN

Although the distribution of DNA-binding proteins inside the cell nucleus can be analyzed by immunolabeling or by tagging proteins with GFP, we cannot establish whether the protein is bound to DNA or not. Here, we describe a novel approach that allows imaging of the in situ interaction between a GFP-fusion protein and DNA in the cell nucleus, using fluorescence resonance energy transfer (FRET). We used fluorescence lifetime imaging microscopy (FLIM) as a reliable tool to detect protein in contact with DNA. The method was successfully applied to the DNA-binding proteins histone H2B and the glucocorticoid receptor and to the heterochromatin-associated proteins HP1alpha and HP1beta.


Asunto(s)
Núcleo Celular/metabolismo , ADN/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas Nucleares/metabolismo , Línea Celular Tumoral , Homólogo de la Proteína Chromobox 5 , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Histonas/metabolismo , Humanos , Microscopía Fluorescente/métodos , Protaminas/metabolismo , Unión Proteica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA