Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Inhal Toxicol ; : 1-26, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39388247

RESUMEN

PURPOSE: Airborne pathogen scan penetrate in human respiratory tract and can cause illness. The use of animal models to predict aerosol deposition and study respiratory disease pathophysiology is therefore important for research and a prerequisite to test and study the mechanism of action of treatment. NHPs are relevant animal species for inhalation studies because of their similarities with humans in terms of anatomical structure, respiratory parameters and immune system. MATERIALS AND METHODS: The aim of this review is to provide an overview of the state of the art of pathogen aerosol studies performed in non-human primates (NHPs). Herein, we present and discuss the deposition of aerosolized bacteria and viruses. In this review, we present important advantages of using NHPs as model for inhalation studies. RESULTS: We demonstrate that deposition in the respiratory tract is not only a function of aerosol size but also the technique of administration influences the biological activity and site of aerosol deposition. Finally, we observe an influence of a region of pathogen deposition in the respiratory tract on the development of the pathophysiological effect in NHPs. CONCLUSION: The wide range of methods used for the delivery of pathogento NHP respiratory airways is associated with varying doses and deposition profiles in the airways.

2.
Pharm Res ; 40(3): 765-775, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36653519

RESUMEN

PURPOSE: Preclinical aerosol studies using animals are essential for evaluating toxic or therapeutic effects on human respiratory tract. Macaques are relevant animal models for respiratory studies, but they are sensitive, expensive and difficult-to-access. METHODS: In the context of preliminary studies before animal experiments, we set up an alternative in vitro anatomical model of macaque airways to reduce, refine and replace (3Rs) the animals. We printed an in vitro anatomical cast until the third bronchial division from X-ray computed tomography data of a healthy cynomolgus macaque. This in vitro model was then connected to a respiratory pump to mimic macaque's breathing. We assessed the relevance of this in vitro model, by comparing aerosol deposition patterns obtained with the anatomical model and in three macaques using planar gamma camera imaging. DTPA-99mTechnetium aerosols were produced using three jet nebulizers, generating three different particle sizes: 13.1, 3.2 and 0.93 µm in terms of the mass median aerodynamic diameter (MMAD). RESULTS: The data showed no statistical differences between the animal and anatomical in vitro models in terms of total aerosol deposited in the airways. However, the distribution of the deposition in the airways showed a higher deposited fraction in the upper respiratory tract in the animals than the in vitro model for all particle sizes. CONCLUSIONS: The anatomical printed model appears to be a relevant in vitro tool to predict total aerosol deposition in macaque airways.


Asunto(s)
Pulmón , Nebulizadores y Vaporizadores , Animales , Humanos , Administración por Inhalación , Aerosoles , Macaca , Impresión Tridimensional , Tamaño de la Partícula
3.
Mol Immunol ; 135: 147-164, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33895579

RESUMEN

Respiratory pathogens represent a great burden for humanity and a potential source of new pandemics, as illustrated by the recent emergence of coronavirus disease 2019 (COVID-19). In recent decades, biotechnological advances have led to the development of numerous innovative therapeutic molecules and vaccine immunogens. However, we still lack effective treatments and vaccines against many respiratory pathogens. More than ever, there is a need for a fast, predictive, preclinical pipeline, to keep pace with emerging diseases. Animal models are key for the preclinical development of disease management strategies. The predictive value of these models depends on their ability to reproduce the features of the human disease, the mode of transmission of the infectious agent and the availability of technologies for monitoring infection. This review focuses on the use of non-human primates as relevant preclinical models for the development of prevention and treatment for human respiratory infections.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Modelos Animales de Enfermedad , SARS-CoV-2/inmunología , Animales , COVID-19/patología , COVID-19/prevención & control , Vacunas contra la COVID-19/uso terapéutico , Haplorrinos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA