Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
2.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36834989

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection leads to a wide range of clinical manifestations and determines the need for personalized and precision medicine. To better understand the biological determinants of this heterogeneity, we explored the plasma proteome of 43 COVID-19 patients with different outcomes by an untargeted liquid chromatography-mass spectrometry approach. The comparison between asymptomatic or pauci-symptomatic subjects (MILDs), and hospitalised patients in need of oxygen support therapy (SEVEREs) highlighted 29 proteins emerged as differentially expressed: 12 overexpressed in MILDs and 17 in SEVEREs. Moreover, a supervised analysis based on a decision-tree recognised three proteins (Fetuin-A, Ig lambda-2chain-C-region, Vitronectin) that are able to robustly discriminate between the two classes independently from the infection stage. In silico functional annotation of the 29 deregulated proteins pinpointed several functions possibly related to the severity; no pathway was associated exclusively to MILDs, while several only to SEVEREs, and some associated to both MILDs and SEVEREs; SARS-CoV-2 signalling pathway was significantly enriched by proteins up-expressed in SEVEREs (SAA1/2, CRP, HP, LRG1) and in MILDs (GSN, HRG). In conclusion, our analysis could provide key information for 'proteomically' defining possible upstream mechanisms and mediators triggering or limiting the domino effect of the immune-related response and characterizing severe exacerbations.


Asunto(s)
COVID-19 , Gravedad del Paciente , Proteómica , Humanos , Cromatografía Liquida , COVID-19/diagnóstico , COVID-19/metabolismo , Proteómica/métodos , SARS-CoV-2/patogenicidad , Espectrometría de Masas en Tándem
3.
J Proteome Res ; 21(11): 2798-2809, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36259755

RESUMEN

Mass spectrometry imaging (MSI) is an emerging technology that is capable of mapping various biomolecules within their native spatial context, and performing spatial multiomics on formalin-fixed paraffin-embedded (FFPE) tissues may further increase the molecular characterization of pathological states. Here we present a novel workflow which enables the sequential MSI of lipids, N-glycans, and tryptic peptides on a single FFPE tissue section and highlight the enhanced molecular characterization that is offered by combining the multiple spatial omics data sets. In murine brain and clear cell renal cell carcinoma (ccRCC) tissue, the three molecular levels provided complementary information and characterized different histological regions. Moreover, when the spatial omics data was integrated, the different histopathological regions of the ccRCC tissue could be better discriminated with respect to the imaging data set of any single omics class. Taken together, these promising findings demonstrate the capability to more comprehensively map the molecular complexity within pathological tissue.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Animales , Humanos , Ratones , Adhesión en Parafina , Fijación del Tejido/métodos , Formaldehído/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Péptidos/análisis , Polisacáridos/química , Neoplasias Renales/genética , Lípidos
4.
Int J Mol Sci ; 23(9)2022 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-35563055

RESUMEN

The podocyte injury, and consequent proteinuria, that characterize the pathology of idiopathic membranous nephropathy (IMN) is mediated by an autoimmune reaction against podocyte antigens. In particular, the activation of pathways leading to abundant renal deposits of complement is likely to involve the binding of mannose-binding lectin (MBL) to aberrant glycans on immunoglobulins. To obtain a landscape of circulatory IgG Fc glycosylation characterizing this disease, we conducted a systematic N-glycan profiling study of IgG1, 2, and 4 by mass spectrometry. The cohort included 57 IMN patients, a pathological control group with nephrotic syndrome (PN) (n = 20), and 88 healthy control subjects. The effect of sex and age was assessed in all groups and controlled by rigorous matching. Several IgG Fc glycan traits were found to be associated with IMN. Interestingly, among them, only IgG4-related results were specific for IMN and not for PN. Hypo-galactosylation of IgG4, already shown for IMN, was observed to occur in the absence of core fucose, in line with a probable increase of pro-inflammatory IgG. In addition, elevated levels of fucosylated IgG4, along with low levels of hybrid-type glycans, were detected. Some of these IgG4 alterations are likely to be more pronounced in high PLA2R (phospholipase A2 receptor) patients. IgG Fc glycosylation patterns associated with IMN warrant further studies of their role in disease mechanisms and may eventually enrich the diagnostic spectrum regarding patient stratification.


Asunto(s)
Glomerulonefritis Membranosa , Síndrome Nefrótico , Podocitos , Autoanticuerpos , Femenino , Glomerulonefritis Membranosa/patología , Humanos , Inmunoglobulina G , Riñón/metabolismo , Masculino , Síndrome Nefrótico/metabolismo , Podocitos/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA