Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Nat Commun ; 15(1): 1933, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431601

RESUMEN

Knowledge of genetic determinism and evolutionary dynamics mediating host-pathogen interactions is essential to manage fungal plant diseases. Studies on the genetic architecture of fungal pathogenicity often focus on large-effect effector genes triggering strong, qualitative resistance. It is not clear how this translates to predominately quantitative interactions. Here, we use the Zymoseptoria tritici-wheat model to elucidate the genetic architecture of quantitative pathogenicity and mechanisms mediating host adaptation. With a multi-host genome-wide association study, we identify 19 high-confidence candidate genes associated with quantitative pathogenicity. Analysis of genetic diversity reveals that sequence polymorphism is the main evolutionary process mediating differences in quantitative pathogenicity, a process that is likely facilitated by genetic recombination and transposable element dynamics. Finally, we use functional approaches to confirm the role of an effector-like gene and a methyltransferase in phenotypic variation. This study highlights the complex genetic architecture of quantitative pathogenicity, extensive diversifying selection and plausible mechanisms facilitating pathogen adaptation.


Asunto(s)
Estudio de Asociación del Genoma Completo , Adaptación al Huésped , Virulencia/genética , Polimorfismo Genético , Interacciones Huésped-Patógeno/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
2.
mBio ; 15(3): e0284023, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349152

RESUMEN

The rapid adaptive evolution of microbes is driven by strong selection pressure acting on genetic variation. How adaptive genetic variation is generated within species and how such variation influences phenotypic trait expression is often not well understood though. We focused on the recent activity of transposable elements (TEs) using deep population genomics and transcriptomics analyses of a fungal plant pathogen with a highly active content of TEs in the genome. Zymoseptoria tritici causes one of the most damaging diseases on wheat, with recent adaptation to the host and environment being facilitated by TE-associated mutations. We obtained genomic and RNA-sequencing data from 146 isolates collected from a single wheat field. We established a genome-wide map of TE insertion polymorphisms in the population by analyzing recent TE insertions among individuals. We quantified the locus-specific transcription of individual TE copies and found considerable population variation at individual TE loci in the population. About 20% of all TE copies show transcription in the genome suggesting that genomic defenses such as repressive epigenetic marks and repeat-induced polymorphisms are at least partially ineffective at preventing the proliferation of TEs in the genome. A quarter of recent TE insertions are associated with expression variation of neighboring genes providing broad potential to influence trait expression. We indeed found that TE insertions are likely responsible for variation in virulence on the host and potentially diverse components of secondary metabolite production. Our large-scale transcriptomics study emphasizes how TE-derived polymorphisms segregate even in individual microbial populations and can broadly underpin trait variation in pathogens.IMPORTANCEPathogens can rapidly adapt to new hosts, antimicrobials, or changes in the environment. Adaptation arises often from mutations in the genome; however, how such variation is generated remains poorly understood. We investigated the most dynamic regions of the genome of Zymoseptoria tritici, a major fungal pathogen of wheat. We focused on the transcription of transposable elements. A large proportion of the transposable elements not only show signatures of potential activity but are also variable within a single population of the pathogen. We find that this variation in activity is likely influencing many important traits of the pathogen. Hence, our work provides insights into how a microbial species can adapt over the shortest time periods based on the activity of transposable elements.


Asunto(s)
Ascomicetos , Elementos Transponibles de ADN , Humanos , Ascomicetos/genética , Polimorfismo Genético , Mapeo Cromosómico , Evolución Molecular
4.
Mob DNA ; 15(1): 2, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245743

RESUMEN

How novel protein functions are acquired is a central question in molecular biology. Key paths to novelty include gene duplications, recombination or horizontal acquisition. Transposable elements (TEs) are increasingly recognized as a major source of novel domain-encoding sequences. However, the impact of TE coding sequences on the evolution of the proteome remains understudied. Here, we analyzed 1237 genomes spanning the phylogenetic breadth of the fungal kingdom. We scanned proteomes for evidence of co-occurrence of TE-derived domains along with other conventional protein functional domains. We detected more than 13,000 predicted proteins containing potentially TE-derived domain, of which 825 were identified in more than five genomes, indicating that many host-TE fusions may have persisted over long evolutionary time scales. We used the phylogenetic context to identify the origin and retention of individual TE-derived domains. The most common TE-derived domains are helicases derived from Academ, Kolobok or Helitron. We found putative TE co-options at a higher rate in genomes of the Saccharomycotina, providing an unexpected source of protein novelty in these generally TE depleted genomes. We investigated in detail a candidate host-TE fusion with a heterochromatic transcriptional silencing function that may play a role in TE and gene regulation in ascomycetes. The affected gene underwent multiple full or partial losses within the phylum. Overall, our work establishes a kingdom-wide view of putative host-TE fusions and facilitates systematic investigations of candidate fusion proteins.

5.
Mol Ecol ; 33(4): e17242, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38084851

RESUMEN

Antagonistic selection between pathogens and their hosts can drive rapid evolutionary change and leave distinct molecular footprints of past and ongoing selection in the genomes of the interacting species. Despite an increasing availability of tools able to identify signatures of selection, the genetic mechanisms underlying coevolutionary interactions and the specific genes involved are still poorly understood, especially in heterogeneous natural environments. We searched the genomes of two species of Epichloe plant pathogen for evidence of recent selection. The Epichloe genus includes highly host-specific species that can sterilize their grass hosts. We performed selection scans using genome-wide SNP data from seven natural populations of two co-occurring Epichloe sibling species specialized on different hosts. We found evidence of recent (and ongoing) selective sweeps across the genome in both species. However, selective sweeps were more abundant in the species with a larger effective population size. Sweep regions often overlapped with highly polymorphic AT-rich regions supporting the role of these genome compartments in adaptive evolution. Although most loci under selection were specific to individual populations, we could also identify several candidate genes targeted by selection in sweep regions shared among populations. The genes encoded small secreted proteins typical of fungal effectors and cell wall-degrading enzymes. By investigating the genomic signatures of selection across multiple populations and species, this study contributes to our understanding of complex adaptive processes in natural plant pathogen systems.


Asunto(s)
Epichloe , Epichloe/genética , Genoma , Poaceae/genética , Genómica , Plantas/genética , Selección Genética
6.
Nucleic Acids Res ; 52(3): 1226-1242, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38142443

RESUMEN

Transposable elements (TEs) are key drivers of genomic variation contributing to recent adaptation in most species. Yet, the evolutionary origins and insertion dynamics within species remain poorly understood. We recapitulate the spread of the pathogenicity-associated Styx element across five species that last diverged ∼11 000 years ago. We show that the element likely originated in the Zymoseptoria fungal pathogen genus and underwent multiple independent reactivation events. Using a global 900-genome panel of the wheat pathogen Zymoseptoria tritici, we assess Styx copy number variation and identify renewed transposition activity in Oceania and South America. We show that the element can mobilize to create additional Styx copies in a four-generation pedigree. Importantly, we find that new copies of the element are not affected by genomic defenses suggesting minimal control against the element. Styx copies are preferentially located in recombination breakpoints and likely triggered multiple types of large chromosomal rearrangements. Taken together, we establish the origin, diversification and reactivation of a highly active TE with likely major consequences for chromosomal integrity and the expression of disease.


Asunto(s)
Ascomicetos , Variaciones en el Número de Copia de ADN , Elementos Transponibles de ADN , Humanos , Evolución Biológica , Aberraciones Cromosómicas , Cromosomas , Evolución Molecular , Virulencia , Ascomicetos/genética , Ascomicetos/patogenicidad , Ascomicetos/fisiología
7.
PLoS Pathog ; 19(11): e1011801, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37972199

RESUMEN

Microbial pathogens often harbor substantial functional diversity driven by structural genetic variation. Rapid adaptation from such standing variation threatens global food security and human health. Genome-wide association studies (GWAS) provide a powerful approach to identify genetic variants underlying recent pathogen adaptation. However, the reliance on single reference genomes and single nucleotide polymorphisms (SNPs) obscures the true extent of adaptive genetic variation. Here, we show quantitatively how a combination of multiple reference genomes and reference-free approaches captures substantially more relevant genetic variation compared to single reference mapping. We performed reference-genome based association mapping across 19 reference-quality genomes covering the diversity of the species. We contrasted the results with a reference-free (i.e., k-mer) approach using raw whole-genome sequencing data in a panel of 145 strains collected across the global distribution range of the fungal wheat pathogen Zymoseptoria tritici. We mapped the genetic architecture of 49 life history traits including virulence, reproduction and growth in multiple stressful environments. The inclusion of additional reference genome SNP datasets provides a nearly linear increase in additional loci mapped through GWAS. Variants detected through the k-mer approach explained a higher proportion of phenotypic variation than a reference genome-based approach and revealed functionally confirmed loci that classic GWAS approaches failed to map. The power of GWAS in microbial pathogens can be significantly enhanced by comprehensively capturing structural genetic variation. Our approach is generalizable to a large number of species and will uncover novel mechanisms driving rapid adaptation of pathogens.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Humanos , Estudio de Asociación del Genoma Completo/métodos , Variación Biológica Poblacional
8.
BMC Res Notes ; 16(1): 335, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37974222

RESUMEN

OBJECTIVES: High-quality species-specific transposable element (TE) libraries are required for studies to elucidate the evolutionary dynamics of TEs and gain an understanding of their impacts on host genomes. Such high-quality TE resources are severely lacking for species in the fungal kingdom. To facilitate future studies on the putative role of TEs in rapid adaptation observed in the fungal wheat pathogen Zymoseptoria tritici, we produced a manually curated TE library. This was generated by detecting TEs in 19 reference genome assemblies representing the global diversity of the species supplemented by multiple sister species genomes. Improvements over previous TE libraries have been made on TE boundary resolution, detection of ORFs, TE domains, terminal inverted repeats, and class-specific motifs. DATA DESCRIPTION: A TE consensus library for Z. tritici formatted for use with RepeatMasker. This data is relevant to other researchers investigating TE-host evolutionary dynamics in Z. tritici or who are interested in comparative studies of the fungal kingdom. Further, this TE library can be used to improve gene annotation. Finally, this TE library increases the number of manually curated TE datasets, providing resources to further our understanding of TE diversity.


Asunto(s)
Ascomicetos , Elementos Transponibles de ADN , Elementos Transponibles de ADN/genética , Ascomicetos/genética , Anotación de Secuencia Molecular , Biblioteca de Genes
9.
Microb Genom ; 9(11)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37991492

RESUMEN

Long non-coding RNAs (lncRNAs) are regulatory molecules interacting in a wide array of biological processes. lncRNAs in fungal pathogens can be responsive to stress and play roles in regulating growth and nutrient acquisition. Recent evidence suggests that lncRNAs may also play roles in virulence, such as regulating pathogenicity-associated enzymes and on-host reproductive cycles. Despite the importance of lncRNAs, only a few model fungi have well-documented inventories of lncRNA. In this study, we apply a recent computational pipeline to predict high-confidence lncRNA candidates in Zymoseptoria tritici, an important global pathogen of wheat impacting global food production. We analyse genomic features of lncRNAs and the most likely associated processes through analyses of expression over a host infection cycle. We find that lncRNAs are frequently expressed during early infection, before the switch to necrotrophic growth. They are mostly located in facultative heterochromatic regions, which are known to contain many genes associated with pathogenicity. Furthermore, we find that lncRNAs are frequently co-expressed with genes that may be involved in responding to host defence signals, such as oxidative stress. Finally, we assess pangenome features of lncRNAs using four additional reference-quality genomes. We find evidence that the repertoire of expressed lncRNAs varies substantially between individuals, even though lncRNA loci tend to be shared at the genomic level. Overall, this study provides a repertoire and putative functions of lncRNAs in Z. tritici enabling future molecular genetics and functional analyses in an important pathogen.


Asunto(s)
Ascomicetos , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Ascomicetos/genética , Genómica , Estrés Oxidativo
10.
BMC Biol ; 21(1): 263, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37981685

RESUMEN

BACKGROUND: In agricultural ecosystems, outbreaks of diseases are frequent and pose a significant threat to food security. A successful pathogen undergoes a complex and well-timed sequence of regulatory changes to avoid detection by the host immune system; hence, well-tuned gene regulation is essential for survival. However, the extent to which the regulatory polymorphisms in a pathogen population provide an adaptive advantage is poorly understood. RESULTS: We used Zymoseptoria tritici, one of the most important pathogens of wheat, to generate a genome-wide map of regulatory polymorphism governing gene expression. We investigated genome-wide transcription levels of 146 strains grown under nutrient starvation and performed expression quantitative trait loci (eQTL) mapping. We identified cis-eQTLs for 65.3% of all genes and the majority of all eQTL loci are within 2kb upstream and downstream of the transcription start site (TSS). We also show that polymorphism in different gene elements contributes disproportionally to gene expression variation. Investigating regulatory polymorphism in gene categories, we found an enrichment of regulatory variants for genes predicted to be important for fungal pathogenesis but with comparatively low effect size, suggesting a separate layer of gene regulation involving epigenetics. We also show that previously reported trait-associated SNPs in pathogen populations are frequently cis-regulatory variants of neighboring genes with implications for the trait architecture. CONCLUSIONS: Overall, our study provides extensive evidence that single populations segregate large-scale regulatory variation and are likely to fuel rapid adaptation to resistant hosts and environmental change.


Asunto(s)
Ecosistema , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Agricultura , Brotes de Enfermedades
11.
Phytopathology ; 113(10): 1924-1933, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37261424

RESUMEN

Managing pathogen damage in wheat production is important for sustaining yields. Fungal plant pathogen genomes encode many small secreted proteins acting as effectors that play key roles in the successful colonization of host tissue and triggering host defenses. AvrStb6 is the first described Zymoseptoria tritici avirulence effector, which triggers Stb6-mediated immunity in the wheat host in a gene-for-gene manner. Evasion of major resistance factors such as Stb6 challenges deployment decisions on wheat cultivars. In this study, we analyzed the evolution of the AvrStb6 effector in Iranian isolates of Z. tritici. In total, 78 isolates were isolated and purified from 30 infected wheat specimens collected from the East Azerbaijan and Ardabil provinces of Iran. The pathogenicity of all isolates was evaluated on the susceptible wheat cultivar 'Tajan'. A subset of 40 isolates were also tested for pathogenicity on the resistant cultivar 'Shafir' carrying Stb6. Genetic diversity at the AvrStb6 locus was analyzed for 14 isolates covering the breadth of the observed disease severity. The AvrStb6 sequence variation was high, with virulent isolates carrying highly diverse AvrStb6 haplotypes. In an analysis including more than 1,000 additional AvrStb6 sequences from a global set of isolates, we found that virulent isolates carried AvrStb6 haplotypes either clustering with known virulent haplotypes on different continents or constituting previously unknown haplotypes. Furthermore, we found that AvrStb6 variants from avirulent isolates clustered with known avirulent genotypes from Europe. Our study highlights the relevance of AvrStb6 for Z. tritici virulence and the exceptional global diversity patterns of this effector.


Asunto(s)
Variación Genética , Enfermedades de las Plantas , Irán , Virulencia/genética , Enfermedades de las Plantas/microbiología
12.
PLoS Pathog ; 19(5): e1011376, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37172036

RESUMEN

Zymoseptoria tritici is the fungal pathogen responsible for Septoria tritici blotch on wheat. Disease outcome in this pathosystem is partly determined by isolate-specific resistance, where wheat resistance genes recognize specific fungal factors triggering an immune response. Despite the large number of known wheat resistance genes, fungal molecular determinants involved in such cultivar-specific resistance remain largely unknown. We identified the avirulence factor AvrStb9 using association mapping and functional validation approaches. Pathotyping AvrStb9 transgenic strains on Stb9 cultivars, near isogenic lines and wheat mapping populations, showed that AvrStb9 interacts with Stb9 resistance gene, triggering an immune response. AvrStb9 encodes an unusually large avirulence gene with a predicted secretion signal and a protease domain. It belongs to a S41 protease family conserved across different filamentous fungi in the Ascomycota class and may constitute a core effector. AvrStb9 is also conserved among a global Z. tritici population and carries multiple amino acid substitutions caused by strong positive diversifying selection. These results demonstrate the contribution of an 'atypical' conserved effector protein to fungal avirulence and the role of sequence diversification in the escape of host recognition, adding to our understanding of host-pathogen interactions and the evolutionary processes underlying pathogen adaptation.


Asunto(s)
Ascomicetos , Triticum , Triticum/genética , Triticum/microbiología , Péptido Hidrolasas/metabolismo , Proteínas Fúngicas/metabolismo , Endopeptidasas/metabolismo , Enfermedades de las Plantas/microbiología
13.
PLoS Biol ; 21(4): e3002052, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37040332

RESUMEN

Wheat, one of the most important food crops, is threatened by a blast disease pandemic. Here, we show that a clonal lineage of the wheat blast fungus recently spread to Asia and Africa following two independent introductions from South America. Through a combination of genome analyses and laboratory experiments, we show that the decade-old blast pandemic lineage can be controlled by the Rmg8 disease resistance gene and is sensitive to strobilurin fungicides. However, we also highlight the potential of the pandemic clone to evolve fungicide-insensitive variants and sexually recombine with African lineages. This underscores the urgent need for genomic surveillance to track and mitigate the spread of wheat blast outside of South America and to guide preemptive wheat breeding for blast resistance.


Asunto(s)
Pandemias , Triticum , Triticum/genética , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Genómica , Hongos
14.
PLoS One ; 18(2): e0281181, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36745583

RESUMEN

Crop pathogens pose severe risks to global food production due to the rapid rise of resistance to pesticides and host resistance breakdowns. Predicting future risks requires monitoring tools to identify changes in the genetic composition of pathogen populations. Here we report the design of a microfluidics-based amplicon sequencing assay to multiplex 798 loci targeting virulence and fungicide resistance genes, and randomly selected genome-wide markers for the fungal pathogen Zymoseptoria tritici. The fungus causes one of the most devastating diseases on wheat showing rapid adaptation to fungicides and host resistance. We optimized the primer design by integrating polymorphism data from 632 genomes of the same species. To test the performance of the assay, we genotyped 192 samples in two replicates. Analysis of the short-read sequence data generated by the assay showed a fairly stable success rate across samples to amplify a large number of loci. The performance was consistent between samples originating from pure genomic DNA as well as material extracted directly from infected wheat leaves. In samples with mixed genotypes, we found that the assay recovers variations in allele frequencies. We also explored the potential of the amplicon assay to recover transposable element insertion polymorphism relevant for fungicide resistance. As a proof-of-concept, we show that the assay recovers the pathogen population structure across French wheat fields. Genomic monitoring of crop pathogens contributes to more sustainable crop protection and yields.


Asunto(s)
Ascomicetos , Fungicidas Industriales , Fungicidas Industriales/farmacología , Virulencia/genética , Flujo Génico , Ascomicetos/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
15.
Nat Commun ; 14(1): 1059, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36828814

RESUMEN

Human activity impacts the evolutionary trajectories of many species worldwide. Global trade of agricultural goods contributes to the dispersal of pathogens reshaping their genetic makeup and providing opportunities for virulence gains. Understanding how pathogens surmount control strategies and cope with new climates is crucial to predicting the future impact of crop pathogens. Here, we address this by assembling a global thousand-genome panel of Zymoseptoria tritici, a major fungal pathogen of wheat reported in all production areas worldwide. We identify the global invasion routes and ongoing genetic exchange of the pathogen among wheat-growing regions. We find that the global expansion was accompanied by increased activity of transposable elements and weakened genomic defenses. Finally, we find significant standing variation for adaptation to new climates encountered during the global spread. Our work shows how large population genomic panels enable deep insights into the evolutionary trajectory of a major crop pathogen.


Asunto(s)
Aclimatación , Adaptación Fisiológica , Humanos , Virulencia/genética , Genómica , Enfermedades de las Plantas/microbiología
16.
PLoS Pathog ; 19(2): e1011130, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36787337

RESUMEN

The activity of transposable elements (TEs) contributes significantly to pathogen genome evolution. TEs often destabilize genome integrity but may also confer adaptive variation in pathogenicity or resistance traits. De-repression of epigenetically silenced TEs often initiates bursts of transposition activity that may be counteracted by purifying selection and genome defenses. However, how these forces interact to determine the expansion routes of TEs within a pathogen species remains largely unknown. Here, we analyzed a set of 19 telomere-to-telomere genomes of the fungal wheat pathogen Zymoseptoria tritici. Phylogenetic reconstruction and ancestral state estimates of individual TE families revealed that TEs have undergone distinct activation and repression periods resulting in highly uneven copy numbers between genomes of the same species. Most TEs are clustered in gene poor niches, indicating strong purifying selection against insertions near coding sequences, or as a consequence of insertion site preferences. TE families with high copy numbers have low sequence divergence and strong signatures of defense mechanisms (i.e., RIP). In contrast, small non-autonomous TEs (i.e., MITEs) are less impacted by defense mechanisms and are often located in close proximity to genes. Individual TE families have experienced multiple distinct burst events that generated many nearly identical copies. We found that a Copia element burst was initiated from recent copies inserted substantially closer to genes compared to older copies. Overall, TE bursts tended to initiate from copies in GC-rich niches that escaped inactivation by genomic defenses. Our work shows how specific genomic environments features provide triggers for TE proliferation in pathogen genomes.


Asunto(s)
Elementos Transponibles de ADN , Evolución Molecular , Humanos , Elementos Transponibles de ADN/genética , Filogenia , Secuencia de Bases , Genómica
17.
Microbiol Spectr ; : e0444322, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36749120

RESUMEN

Plant diseases are often caused by co-infections of multiple pathogens with the potential to aggravate disease severity. In genetically diverse pathogen species, co-infections can also be caused by multiple strains of the same species. However, the outcome of such mixed infections by different conspecific genotypes is poorly understood. The interaction among pathogen strains with complex lifestyles outside and inside of the host are likely shaped by diverse traits, including metabolic capacity and the ability to overcome host immune responses. To disentangle competitive outcomes among pathogen strains, we investigated the fungal wheat pathogen Zymoseptoria tritici. The pathogen infects wheat leaves in complex strain assemblies, and highly diverse populations persist between growing seasons. We investigated a set of 14 genetically different strains collected from the same field to assess both competitive outcomes under culture conditions and on the host. Growth kinetics of cocultured strains (~100 pairs) significantly deviated from single strain expectations, indicating competitive exclusion depending on the strain genotype. We found similarly complex outcomes of lesion development on plant leaves following co-infections by the same pairs of strains. While some pairings suppressed overall damage to the host, other combinations exceeded expectations of lesion development based on single strain outcomes. Strain competition outcomes in the absence of the host were poor predictors of outcomes on the host, suggesting that the interaction with the plant immune system adds significant complexity. Intraspecific co-infection dynamics likely make important contributions to disease outcomes in the wild. IMPORTANCE Plants are often attacked by a multitude of pathogens simultaneously, and different species can facilitate or constrain the colonization by others. To what extent simultaneous colonization by different strains of the same species matters, remains unclear. We focused on intra-specific interactions between strains of the major fungal wheat pathogen Zymoseptoria tritici. The pathogen persists in the environment before infecting plant leaves early in the growing season. Leaves are typically colonized by a multitude of strains. Strains cultured in pairs without host were growing differently compared to strains cultured alone. Wheat leaves infected either with single or pairs of strains, we found also highly variable outcomes. Interactions between strains outside of the host were only poorly explaining how strains would interact when on the host, suggesting that pathogen strains engage in complex interactions dependent on the environment. Better understanding within-species interactions will improve our ability to manage crop infections.

18.
Mol Ecol ; 32(10): 2443-2460, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-35313056

RESUMEN

Microbial pathogens can adapt rapidly to changing environments such as the application of pesticides or host resistance. Copy number variations (CNVs) are a major source of adaptive genetic variation for recent adaptation. Here, we analyse how a major fungal pathogen of barley, Rhynchosporium commune, has adapted to the host environment and fungicide applications. We screen the genomes of 125 isolates sampled across a worldwide set of populations and identify a total of 7,879 gene duplications and 116 gene deletions. Most gene duplications result from segmental chromosomal duplications. Although CNVs are generally under negative selection, we find that genes affected by CNVs are enriched in functions related to host exploitation (i.e., effectors and cell-wall-degrading enzymes). We perform genome-wide association studies (GWAS) and identify a large segmental duplication of CYP51A that has contributed to the emergence of azole resistance and a duplication encompassing an effector gene affecting virulence. We show that the adaptive CNVs were probably created by recently active transposable element families. Moreover, we find that specific transposable element families are important drivers of recent gene CNV. Finally, we use a genome-wide single nucleotide polymorphism data set to replicate the GWAS and contrast it with the CNV-focused analysis. Together, our findings show how extensive segmental duplications create the raw material for recent adaptation in global populations of a fungal pathogen.


Asunto(s)
Variaciones en el Número de Copia de ADN , Estudio de Asociación del Genoma Completo , Variaciones en el Número de Copia de ADN/genética , Elementos Transponibles de ADN , Genética de Población , Adaptación Fisiológica
19.
Microbiol Spectr ; 10(6): e0251322, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36409146

RESUMEN

The evolution of sequencing technology and multiplexing has rapidly expanded our ability to characterize fungal diversity in the environment. However, obtaining an unbiased assessment of the fungal community using ribosomal markers remains challenging. Longer amplicons were shown to improve taxonomic resolution and resolve ambiguities by reducing the risk of spurious operational taxonomic units. We examined the implications of barcoding strategies by amplifying and sequencing two ribosomal DNA fragments. We analyzed the performance of the full internal transcribed spacer (ITS) and a longer fragment including also a part of the 28S ribosomal subunit replicated on 60 grapevine trunk core samples. Grapevine trunks harbor highly diverse fungal communities with implications for disease development. Using identical handling, amplification, and sequencing procedures, we obtained higher sequencing depths for the shorter ITS amplicon. Despite the more limited access to polymorphism, the overall diversity in amplified sequence variants was higher for the shorter ITS amplicon. We detected no meaningful bias in the phylogenetic composition due to the amplicon choice across analyzed samples. Despite the increased resolution of the longer ITS-28S amplicon, the higher and more consistent yields of the shorter amplicons produced a clearer resolution of the fungal community of grapevine stem samples. Our study highlights that the choice of ribosomal amplicons should be carefully evaluated and adjusted according to specific goals. IMPORTANCE Surveying fungal communities is key to our understanding of ecological functions of diverse habitats. Fungal communities can inform about the resilience of agricultural ecosystems, risks to human health, and impacts of pathogens. Community compositions are typically analyzed using ribosomal DNA sequences. Due to technical limitations, most fungal community surveys were based on amplifying a short but highly variable fragment. Advances in sequencing technology enabled the use of longer fragments that can address some limitations of species identification. In this study, we examined the implications of choosing either a short or long ribosomal sequence fragment by replicating the analyses on 60 grapevine wood core samples. Using highly accurate long-read sequencing, we found that the shorter fragment produced substantially higher yields. The shorter fragment also revealed more sequence and species diversity. Our study highlights that the choice of ribosomal amplicons should be carefully evaluated and adjusted according to specific goals.


Asunto(s)
Micobioma , Vitis , ADN de Hongos/genética , ADN Ribosómico/genética , Ecosistema , Hongos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Micobioma/genética , Filogenia , Vitis/microbiología
20.
Gigascience ; 112022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36251273

RESUMEN

BACKGROUND: The Aldabra giant tortoise (Aldabrachelys gigantea) is one of only two giant tortoise species left in the world. The species is endemic to Aldabra Atoll in Seychelles and is listed as Vulnerable on the International Union for Conservation of Nature Red List (v2.3) due to its limited distribution and threats posed by climate change. Genomic resources for A. gigantea are lacking, hampering conservation efforts for both wild and ex situpopulations. A high-quality genome would also open avenues to investigate the genetic basis of the species' exceptionally long life span. FINDINGS: We produced the first chromosome-level de novo genome assembly of A. gigantea using PacBio High-Fidelity sequencing and high-throughput chromosome conformation capture. We produced a 2.37-Gbp assembly with a scaffold N50 of 148.6 Mbp and a resolution into 26 chromosomes. RNA sequencing-assisted gene model prediction identified 23,953 protein-coding genes and 1.1 Gbp of repetitive sequences. Synteny analyses among turtle genomes revealed high levels of chromosomal collinearity even among distantly related taxa. To assess the utility of the high-quality assembly for species conservation, we performed a low-coverage resequencing of 30 individuals from wild populations and two zoo individuals. Our genome-wide population structure analyses detected genetic population structure in the wild and identified the most likely origin of the zoo-housed individuals. We further identified putatively deleterious mutations to be monitored. CONCLUSIONS: We establish a high-quality chromosome-level reference genome for A. gigantea and one of the most complete turtle genomes available. We show that low-coverage whole-genome resequencing, for which alignment to the reference genome is a necessity, is a powerful tool to assess the population structure of the wild population and reveal the geographic origins of ex situ individuals relevant for genetic diversity management and rewilding efforts.


Asunto(s)
Tortugas , Animales , Cromosomas/genética , Genoma , Genómica , Filogenia , Tortugas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA