Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Hypertension ; 80(4): 837-851, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36724801

RESUMEN

BACKGROUND: Prematurity is strongly associated with poor respiratory function in the neonate. Rescue therapies include treatment with glucocorticoids due to their anti-inflammatory and maturational effects on the developing lung. However, glucocorticoid treatment in the infant can increase the risk of long-term cardiovascular complications including hypertension, cardiac, and endothelial dysfunction. Accumulating evidence implicates a molecular link between glucocorticoid excess and depletion of nitric oxide (NO) bioavailability as a mechanism underlying the detrimental effects of postnatal steroids on the heart and circulation. Therefore, combined glucocorticoid and statin therapy, by increasing NO bioavailability, may protect the developing cardiovascular system while maintaining beneficial effects on the lung. METHODS: We investigated combined glucocorticoid and statin therapy using an established rodent model of prematurity and combined experiments of cardiovascular function in vivo, with those in isolated organs as well as measurements at the cellular and molecular levels. RESULTS: We show that neonatal glucocorticoid treatment increases the risk of later cardiovascular dysfunction in the offspring. Underlying mechanisms include decreased circulating NO bioavailability, sympathetic hyper-reactivity, and NO-dependent endothelial dysfunction. Combined neonatal glucocorticoid and statin therapy protects the developing cardiovascular system by normalizing NO and sympathetic signaling, without affecting pulmonary maturational or anti-inflammatory effects of glucocorticoids. CONCLUSIONS: Therefore, combined glucocorticoid and statin therapy may be safer than glucocorticoids alone for the treatment of preterm birth.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Nacimiento Prematuro , Recién Nacido , Humanos , Femenino , Glucocorticoides/efectos adversos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Nacimiento Prematuro/prevención & control , Antiinflamatorios , Recien Nacido Prematuro , Dexametasona
2.
FASEB J ; 35(5): e21477, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33891326

RESUMEN

Chronic fetal hypoxia is one of the most common outcomes in complicated pregnancy in humans. Despite this, its effects on the long-term health of the brain in offspring are largely unknown. Here, we investigated in rats whether hypoxic pregnancy affects brain structure and function in the adult offspring and explored underlying mechanisms with maternal antioxidant intervention. Pregnant rats were randomly chosen for normoxic or hypoxic (13% oxygen) pregnancy with or without maternal supplementation with vitamin C in their drinking water. In one cohort, the placenta and fetal tissues were collected at the end of gestation. In another, dams were allowed to deliver naturally, and offspring were reared under normoxic conditions until 4 months of age (young adult). Between 3.5 and 4 months, the behavior, cognition and brains of the adult offspring were studied. We demonstrated that prenatal hypoxia reduced neuronal number, as well as vascular and synaptic density, in the hippocampus, significantly impairing memory function in the adult offspring. These adverse effects of prenatal hypoxia were independent of the hypoxic pregnancy inducing fetal growth restriction or elevations in maternal or fetal plasma glucocorticoid levels. Maternal vitamin C supplementation during hypoxic pregnancy protected against oxidative stress in the placenta and prevented the adverse effects of prenatal hypoxia on hippocampal atrophy and memory loss in the adult offspring. Therefore, these data provide a link between prenatal hypoxia, placental oxidative stress, and offspring brain health in later life, providing insight into mechanism and identifying a therapeutic strategy.


Asunto(s)
Ácido Ascórbico/uso terapéutico , Atrofia/tratamiento farmacológico , Hipoxia Fetal/complicaciones , Hipocampo/efectos de los fármacos , Trastornos de la Memoria/tratamiento farmacológico , Efectos Tardíos de la Exposición Prenatal/tratamiento farmacológico , Animales , Animales Recién Nacidos , Antioxidantes/uso terapéutico , Atrofia/etiología , Atrofia/metabolismo , Atrofia/patología , Suplementos Dietéticos , Modelos Animales de Enfermedad , Femenino , Retardo del Crecimiento Fetal/tratamiento farmacológico , Retardo del Crecimiento Fetal/etiología , Retardo del Crecimiento Fetal/metabolismo , Retardo del Crecimiento Fetal/patología , Masculino , Trastornos de la Memoria/etiología , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/patología , Embarazo , Complicaciones del Embarazo/tratamiento farmacológico , Complicaciones del Embarazo/etiología , Complicaciones del Embarazo/metabolismo , Complicaciones del Embarazo/patología , Efectos Tardíos de la Exposición Prenatal/etiología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/patología , Ratas , Ratas Wistar
3.
Hypertension ; 76(4): 1195-1207, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32862711

RESUMEN

The hypoxic fetus is at greater risk of cardiovascular demise during a challenge, but the reasons behind this are unknown. Clinically, progress has been hampered by the inability to study the human fetus non-invasively for long period of gestation. Using experimental animals, there has also been an inability to induce gestational hypoxia while recording fetal cardiovascular function as the hypoxic pregnancy is occurring. We use novel technology in sheep pregnancy that combines induction of controlled chronic hypoxia with simultaneous, wireless recording of blood pressure and blood flow signals from the fetus. Here, we investigated the cardiovascular defense of the hypoxic fetus to superimposed acute hypotension. Pregnant ewes carrying singleton fetuses surgically prepared with catheters and flow probes were randomly exposed to normoxia or chronic hypoxia from 121±1 days of gestation (term ≈145 days). After 10 days of exposure, fetuses were subjected to acute hypotension via fetal nitroprusside intravenous infusion. Underlying in vivo mechanisms were explored by (1) analyzing fetal cardiac and peripheral vasomotor baroreflex function; (2) measuring the fetal plasma catecholamines; and (3) establishing fetal femoral vasoconstrictor responses to the α1-adrenergic agonist phenylephrine. Relative to controls, chronically hypoxic fetal sheep had reversed cardiac and impaired vasomotor baroreflex function, despite similar noradrenaline and greater adrenaline increments in plasma during hypotension. Chronic hypoxia markedly diminished the fetal vasopressor responses to phenylephrine. Therefore, we show that the chronically hypoxic fetus displays markedly different cardiovascular responses to acute hypotension, providing in vivo evidence of mechanisms linking its greater susceptibility to superimposed stress.


Asunto(s)
Barorreflejo/fisiología , Hipoxia Fetal/fisiopatología , Hipotensión/fisiopatología , Resistencia Vascular/fisiología , Vasoconstricción/fisiología , Agonistas de Receptores Adrenérgicos alfa 1/farmacología , Animales , Catecolaminas/sangre , Femenino , Hipoxia Fetal/sangre , Hemodinámica , Hipotensión/sangre , Hipotensión/inducido químicamente , Nitroprusiato , Fenilefrina/farmacología , Flujo Sanguíneo Regional/efectos de los fármacos , Flujo Sanguíneo Regional/fisiología , Ovinos , Resistencia Vascular/efectos de los fármacos , Vasoconstricción/efectos de los fármacos
4.
PLoS Biol ; 17(1): e2006552, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30668572

RESUMEN

Evidence derived from human clinical studies and experimental animal models shows a causal relationship between adverse pregnancy and increased cardiovascular disease in the adult offspring. However, translational studies isolating mechanisms to design intervention are lacking. Sheep and humans share similar precocial developmental milestones in cardiovascular anatomy and physiology. We tested the hypothesis in sheep that maternal treatment with antioxidants protects against fetal growth restriction and programmed hypertension in adulthood in gestation complicated by chronic fetal hypoxia, the most common adverse consequence in human pregnancy. Using bespoke isobaric chambers, chronically catheterized sheep carrying singletons underwent normoxia or hypoxia (10% oxygen [O2]) ± vitamin C treatment (maternal 200 mg.kg-1 IV daily) for the last third of gestation. In one cohort, the maternal arterial blood gas status, the value at which 50% of the maternal hemoglobin is saturated with oxygen (P50), nitric oxide (NO) bioavailability, oxidative stress, and antioxidant capacity were determined. In another, naturally delivered offspring were raised under normoxia until early adulthood (9 months). Lambs were chronically instrumented and cardiovascular function tested in vivo. Following euthanasia, femoral arterial segments were isolated and endothelial function determined by wire myography. Hypoxic pregnancy induced fetal growth restriction and fetal oxidative stress. At adulthood, it programmed hypertension by enhancing vasoconstrictor reactivity and impairing NO-independent endothelial function. Maternal vitamin C in hypoxic pregnancy improved transplacental oxygenation and enhanced fetal antioxidant capacity while increasing NO bioavailability, offsetting constrictor hyper-reactivity and replenishing endothelial function in the adult offspring. These discoveries provide novel insight into mechanisms and interventions against fetal growth restriction and adult-onset programmed hypertension in an animal model of complicated pregnancy in a species of similar temporal developmental milestones to humans.


Asunto(s)
Ácido Ascórbico/farmacología , Retardo del Crecimiento Fetal/fisiopatología , Hipertensión/prevención & control , Animales , Antioxidantes/farmacología , Ácido Ascórbico/uso terapéutico , Femenino , Hipoxia Fetal/metabolismo , Hipoxia Fetal/fisiopatología , Hipoxia , Óxido Nítrico , Estrés Oxidativo , Embarazo , Complicaciones del Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Ovinos/fisiología
5.
FASEB J ; 30(5): 1968-75, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26932929

RESUMEN

Aging and developmental programming are both associated with oxidative stress and endothelial dysfunction, suggesting common mechanistic origins. However, their interrelationship has been little explored. In a rodent model of programmed cardiovascular dysfunction we determined endothelial function and vascular telomere length in young (4 mo) and aged (15 mo) adult offspring of normoxic or hypoxic pregnancy with or without maternal antioxidant treatment. We show loss of endothelial function [maximal arterial relaxation to acetylcholine (71 ± 3 vs. 55 ± 3%) and increased vascular short telomere abundance (4.2-1.3 kb) 43.0 ± 1.5 vs. 55.1 ± 3.8%) in aged vs. young offspring of normoxic pregnancy (P < 0.05). Hypoxic pregnancy in young offspring accelerated endothelial dysfunction (maximal arterial relaxation to acetylcholine: 42 ± 1%, P < 0.05) but this was dissociated from increased vascular short telomere length abundance. Maternal allopurinol rescued maximal arterial relaxation to acetylcholine in aged offspring of normoxic or hypoxic pregnancy but not in young offspring of hypoxic pregnancy. Aged offspring of hypoxic allopurinol pregnancy compared with aged offspring of untreated hypoxic pregnancy had lower levels of short telomeres (vascular short telomere length abundance 35.1 ± 2.5 vs. 48.2 ± 2.6%) and of plasma proinflammatory chemokine (24.6 ± 2.8 vs. 36.8 ± 5.5 pg/ml, P < 0.05). These data provide evidence for divergence of mechanistic pathways mediating cardiovascular aging and developmental programming of cardiovascular disease, and aging being decelerated by antioxidants even prior to birth.-Allison, B. J., Kaandorp, J. J., Kane, A. D., Camm, E. J., Lusby, C., Cross, C. M., Nevin-Dolan, R., Thakor, A. S., Derks, J. B., Tarry-Adkins, J. L., Ozanne, S. E., Giussani, D. A. Divergence of mechanistic pathways mediating cardiovascular aging and developmental programming of cardiovascular disease.


Asunto(s)
Envejecimiento/fisiología , Enfermedades Cardiovasculares/metabolismo , Fenómenos Fisiológicos Cardiovasculares , Alopurinol/administración & dosificación , Alopurinol/farmacología , Animales , Antimetabolitos/administración & dosificación , Antimetabolitos/farmacología , Biomarcadores/sangre , Femenino , Inflamación/sangre , Inflamación/metabolismo , Masculino , Estrés Oxidativo , Embarazo , Ratas
6.
Physiol Rep ; 3(12)2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26660546

RESUMEN

Progress in the study of pregnancy complicated by chronic hypoxia in large mammals has been held back by the inability to measure long-term significant reductions in fetal oxygenation at values similar to those measured in human pregnancy complicated by fetal growth restriction. Here, we introduce a technique for physiological research able to maintain chronically instrumented maternal and fetal sheep for prolonged periods of gestation under significant and controlled isolated chronic hypoxia beyond levels that can be achieved by habitable high altitude. This model of chronic hypoxia permits measurement of materno-fetal blood gases as the challenge is actually occurring. Chronic hypoxia of this magnitude and duration using this model recapitulates the significant asymmetric growth restriction, the pronounced cardiomyopathy, and the loss of endothelial function measured in offspring of high-risk pregnancy in humans, opening a new window of therapeutic research.

7.
Adv Exp Med Biol ; 814: 77-87, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25015802

RESUMEN

The quality of the intrauterine environment interacts with our genetic makeup to shape the risk of developing disease in later life. Fetal chronic hypoxia is a common complication of pregnancy. This chapter reviews how fetal chronic hypoxia programmes cardiac and endothelial dysfunction in the offspring in adult life and discusses the mechanisms via which this may occur. Using an integrative approach in large and small animal models at the in vivo, isolated organ, cellular and molecular levels, our programmes of work have raised the hypothesis that oxidative stress in the fetal heart and vasculature underlies the mechanism via which prenatal hypoxia programmes cardiovascular dysfunction in later life. Developmental hypoxia independent of changes in maternal nutrition promotes fetal growth restriction and induces changes in the cardiovascular, metabolic and endocrine systems of the adult offspring, which are normally associated with disease states during ageing. Treatment with antioxidants of animal pregnancies complicated with reduced oxygen delivery to the fetus prevents the alterations in fetal growth, and the cardiovascular, metabolic and endocrine dysfunction in the fetal and adult offspring. The work reviewed offers both insight into mechanisms and possible therapeutic targets for clinical intervention against the early origin of cardiometabolic disease in pregnancy complicated by fetal chronic hypoxia.


Asunto(s)
Hipoxia Fetal/complicaciones , Cardiopatías/etiología , Estrés Oxidativo/fisiología , Efectos Tardíos de la Exposición Prenatal/etiología , Femenino , Hipoxia Fetal/metabolismo , Hipoxia Fetal/fisiopatología , Cardiopatías/metabolismo , Cardiopatías/fisiopatología , Humanos , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/fisiopatología
8.
Pediatr Res ; 74(6): 639-45, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24002330

RESUMEN

BACKGROUND: Postnatal glucocorticoid therapy in the treatment of chronic lung disease benefits lung function, however it adversely affects brain development. We hypothesized that combined postnatal glucocorticoid and statin therapy diminishes adverse effects of glucocorticoids on the developing brain. METHODS: On postnatal days (P) 1-3, one male pup per litter received i.p. injections of saline control (C), n = 13) or dexamethasone (0.5, 0.3, 0.1 µg/g; D, n = 13), ± pravastatin (10 mg/kg i.p.; CP, n = 12; DP, n = 15). Statins or saline continued from P4-6. At P21, brains were perfusion fixed for histological and stereological analyses. RESULTS: Relative to controls, dexamethasone reduced total (837 ± 23 vs. 723 ± 37), cortical (378 ± 12 vs. 329 ± 15), and deep gray matter (329 ± 12 vs. 284 ± 15) volume (mm(3)), cortical neuronal number (23 ± 1 vs. 19 ± 1 × 10(6)), and hippocampal neuronal soma volume (CA1: 1,206 ± 32 vs. 999 ± 32; dentate gyrus: 679 ± 28 vs. 542 ± 24 µm(3); all P < 0.05). Dexamethasone increased the glial fibrillary acidic protein-positive astrocyte density in the white matter (96 ± 2 vs. 110 ± 4/0.1 mm(2)); P < 0.05. These effects no longer occurred in brains from pups treated with combined dexamethasone and pravastatin. Pravastatin alone had no effect on these variables. CONCLUSION: Concomitant dexamethasone with statins in premature infants may be safer for the developing brain than dexamethasone alone in the treatment of chronic lung disease.


Asunto(s)
Encéfalo/efectos de los fármacos , Glucocorticoides/efectos adversos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Animales , Peso Corporal/efectos de los fármacos , Encéfalo/anatomía & histología , Encéfalo/crecimiento & desarrollo , Femenino , Masculino , Óxido Nítrico/sangre , Tamaño de los Órganos/efectos de los fármacos , Embarazo , Ratas , Ratas Wistar
9.
Endocrinology ; 153(12): 5961-71, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23070543

RESUMEN

Human and animal studies suggest that suboptimal early nutrition during critical developmental periods impacts long-term health. For example, maternal overnutrition during pregnancy and lactation in mice programs insulin resistance, obesity, and endothelial dysfunction in the offspring. Here we investigated the effects of diet-induced maternal obesity on the offspring cardiac phenotype and explored potential underlying molecular mechanisms. Dams fed the obesogenic diet were heavier (P < 0.01) and fatter (P < 0.0001) than controls throughout pregnancy and lactation. There was no effect of maternal obesity on offspring body weight or body composition up to 8 wk of age. However, maternal obesity resulted in increased offspring cardiac mass (P < 0.05), increased heart-body weight (P < 0.01), heart weight-tibia length (P < 0.05), increased left ventricular free wall thickness and area (P < 0.01 and P < 0.05, respectively), and increased myocyte width (P < 0.001). Consistent with these structural changes, the expression of molecular markers of cardiac hypertrophy were also increased [Nppb(BNP), Myh7-Myh6(ßMHC-αMHC) (both P < 0.05) and mir-133a (P < 0.01)]. Offspring were hyperinsulinemic and displayed increased insulin action through AKT (P < 0.01), ERK (P < 0.05), and mammalian target of rapamycin (P < 0.05). p38MAPK phosphorylation was also increased (P < 0.05), suggesting pathological remodeling. Increased Ncf2(p67(phox)) expression (P < 0.05) and impaired manganese superoxide dismutase levels (P < 0.01) suggested oxidative stress, which was consistent with an increase in levels of 4-hydroxy-2-trans-nonenal (a measure of lipid peroxidation). We propose that maternal diet-induced obesity leads to offspring cardiac hypertrophy, which is independent of offspring obesity but is associated with hyperinsulinemia-induced activation of AKT, mammalian target of rapamycin, ERK, and oxidative stress.


Asunto(s)
Cardiomegalia/patología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hiperinsulinismo/metabolismo , Obesidad/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Composición Corporal , Peso Corporal , Femenino , Peroxidación de Lípido , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Ratones , Ratones Endogámicos C57BL , Madres , Estrés Oxidativo , Fenotipo , Embarazo , Preñez , Efectos Tardíos de la Exposición Prenatal
10.
PLoS One ; 7(2): e31017, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22348036

RESUMEN

Fetal hypoxia is a common complication of pregnancy. It has been shown to programme cardiac and endothelial dysfunction in the offspring in adult life. However, the mechanisms via which this occurs remain elusive, precluding the identification of potential therapy. Using an integrative approach at the isolated organ, cellular and molecular levels, we tested the hypothesis that oxidative stress in the fetal heart and vasculature underlies the molecular basis via which prenatal hypoxia programmes cardiovascular dysfunction in later life. In a longitudinal study, the effects of maternal treatment of hypoxic (13% O(2)) pregnancy with an antioxidant on the cardiovascular system of the offspring at the end of gestation and at adulthood were studied. On day 6 of pregnancy, rats (n = 20 per group) were exposed to normoxia or hypoxia ± vitamin C. At gestational day 20, tissues were collected from 1 male fetus per litter per group (n = 10). The remaining 10 litters per group were allowed to deliver. At 4 months, tissues from 1 male adult offspring per litter per group were either perfusion fixed, frozen, or dissected for isolated organ preparations. In the fetus, hypoxic pregnancy promoted aortic thickening with enhanced nitrotyrosine staining and an increase in cardiac HSP70 expression. By adulthood, offspring of hypoxic pregnancy had markedly impaired NO-dependent relaxation in femoral resistance arteries, and increased myocardial contractility with sympathetic dominance. Maternal vitamin C prevented these effects in fetal and adult offspring of hypoxic pregnancy. The data offer insight to mechanism and thereby possible targets for intervention against developmental origins of cardiac and peripheral vascular dysfunction in offspring of risky pregnancy.


Asunto(s)
Hipoxia/complicaciones , Estrés Oxidativo , Efectos Tardíos de la Exposición Prenatal/etiología , Animales , Arterias/fisiopatología , Ácido Ascórbico/farmacología , Femenino , Cardiopatías/etiología , Estudios Longitudinales , Masculino , Contracción Miocárdica , Embarazo , Ratas , Enfermedades Vasculares/etiología
11.
J Vasc Res ; 49(1): 50-8, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-21985843

RESUMEN

In human pregnancy, reduced placental perfusion has been associated with fetal aortic thickening. However, the relative contributions of fetal undernutrition versus fetal underoxygenation to triggering alterations in fetal cardiovascular development remain uncertain. Here, we isolate the effects of chronic fetal hypoxia on fetal cardiovascular development in a specific rodent model of chronic fetal hypoxia independent of changes in nutrition during pregnancy. Pregnant rats were housed under normoxic (21% O(2)) or hypoxic (13% O(2)) conditions from day 6 to day 20 of gestation. At day 20, pups and placentas were weighed. Fetal thoraces were fixed for quantitative histological analysis of the aorta. In a separate group, fetal aortic reactivity was assessed via in vitro wire myography. The experiments controlled for sex and within-litter variation. Placental weight was increased and fetal weight maintained in hypoxic pregnancy. Hypoxic pregnancy led to a 176% increment in wall thickness and a 170% increment in the wall-to-lumen area ratio of the fetal aorta. Fetal aortic vascular reactivity was markedly impaired, showing reduced constrictor and relaxant responsiveness in hypoxic pregnancy. Chronic developmental hypoxia independent of changes in nutrition has profound effects on the morphology and function of the fetal aorta in a mammalian species.


Asunto(s)
Aorta/patología , Aorta/fisiopatología , Hipoxia Fetal/patología , Hipoxia Fetal/fisiopatología , Animales , Enfermedad Crónica , Femenino , Peso Fetal , Masculino , Óxido Nítrico/fisiología , Tamaño de los Órganos , Placenta/patología , Embarazo , Ratas , Ratas Wistar
12.
PLoS One ; 6(6): e21142, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21698270

RESUMEN

In premature infants, glucocorticoids ameliorate chronic lung disease, but have adverse effects on long-term neurological function. Glucocorticoid excess promotes free radical overproduction. We hypothesised that the adverse effects of postnatal glucocorticoid therapy on the developing brain are secondary to oxidative stress and that antioxidant treatment would diminish unwanted effects. Male rat pups received a clinically-relevant tapering course of dexamethasone (DEX; 0.5, 0.3, and 0.1 mg x kg(-1) x day(-1)), with or without antioxidant vitamins C and E (DEXCE; 200 mg x kg(-1) x day(-1) and 100 mg x kg(-1) x day(-1), respectively), on postnatal days 1-6 (P1-6). Controls received saline or saline with vitamins. At weaning, relative to controls, DEX decreased total brain volume (704.4±34.7 mm(3) vs. 564.0±20.0 mm(3)), the soma volume of neurons in the CA1 (1172.6±30.4 µm(3) vs. 1002.4±11.8 µm(3)) and in the dentate gyrus (525.9±27.2 µm(3) vs. 421.5±24.6 µm(3)) of the hippocampus, and induced oxidative stress in the cortex (protein expression: heat shock protein 70 [Hsp70]: +68%; 4-hydroxynonenal [4-HNE]: +118% and nitrotyrosine [NT]: +20%). Dexamethasone in combination with vitamins resulted in improvements in total brain volume (637.5±43.1 mm(3)), and soma volume of neurons in the CA1 (1157.5±42.4 µm(3)) and the dentate gyrus (536.1±27.2 µm(3)). Hsp70 protein expression was unaltered in the cortex (+9%), however, 4-HNE (+95%) and NT (+24%) protein expression remained upregulated. Treatment of neonates with vitamins alone induced oxidative stress in the cortex (Hsp70: +67%; 4-HNE: +73%; NT: +22%) and in the hippocampus (NT: +35%). Combined glucocorticoid and antioxidant therapy in premature infants may be safer for the developing brain than glucocorticoids alone in the treatment of chronic lung disease. However, antioxidant therapy in healthy offspring is not recommended.


Asunto(s)
Antioxidantes/administración & dosificación , Encéfalo/metabolismo , Glucocorticoides/administración & dosificación , Estrés Oxidativo , Animales , Western Blotting , Peso Corporal , Encéfalo/crecimiento & desarrollo , Inmunohistoquímica , Masculino , Tamaño de los Órganos , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA