Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39237476

RESUMEN

Ultrasound imaging is extensively used by both practitioners and researchers in assessing muscle thickness (MT); however, its use in the field is constrained by the transportability of stationary devices. New portable ultrasound probes pose as a cost-effective and transportable alternative for field-based assessments. This study evaluated the concurrent validity of a portable probe (Lumify) against a laboratory-based device (Vivid S5) in measuring MT. Eighteen participants (nine males and nine females) visited the laboratory and their MT measurements were collected using each device at five different sites (anterior and posterior arm, anterior and posterior thigh, and posterior lower leg). Bland-Altman plots (systematic and proportional bias, random error, and 95% limits of agreement), Pearson's product-moment correlation coefficient (r), and paired samples t-tests with Cohen's d effect sizes (ES) were used to assess the concurrent validity of the Lumify device. Systematic bias was low at all sites ( ≤ 0.11 cm) while proportional bias was detected only at the posterior lower leg (r2 = 0.217 [r = 0.466]). The difference in MT between devices was significant only at the anterior thigh (p < 0.05); however, ES for all sites were considered trivial (ES ≤ 0.131). Linear associations were found between the devices at each site of measurement (r ≥ 0.95). These results highlight that the Lumify probe can be used interchangeably with the Vivid S5 for MT measurements, providing practitioners and researchers with a more cost-effective and portable alternative for field-based assessments.

2.
Nutrition ; 127: 112528, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39154549

RESUMEN

To acutely enhance muscle size and definition, carbohydrate (CHO)-loading protocols are commonly implemented by bodybuilders in the week before competition. This study sought to evaluate the effects of a bodybuilding CHO-loading protocol on anthropometry. Four dieting males engaging in resistance training (RT) with very low body fat participated in this randomized crossover trial. Each experimental period consisted of data collection on days one, four, and five corresponding to baseline, postdepletion, and postloading phases, respectively. During depletion, a standardized RT regimen and diet was followed. This diet was maintained on day 4 with the addition of placebo (PLA) or CHO drinks which contained 9 g/kg BM CHO for postloading data collection on day 5. Body mass (BM), skinfold thickness (SF), and ultrasound muscle thickness (MT) were obtained with descriptive data at both group and individual level calculated. From baseline, BM, SF, and MT mostly decreased in both conditions following depletion. All outcomes then increased from postdepletion following CHO-loading (BM: +0.8%, SF: +1.1%, MT: +2.9%) but not with PLA. Comparing to baseline, postloading changes were greater with CHO (BM: +0.3%, SF: -2.3%, MT: +2.1%) than PLA (BM: -0.9%, SF: -0.5%, MT: -0.8%). Individual differences in response to each phase were also observed. Group level changes seemingly favor CHO-loading; however, it is difficult to judge whether these changes are practically meaningful as they may not be large enough to exceed measurement error and daily biological fluctuations. Before implementation, coaches and competitors should consider individualizing protocols through precompetition testing and visually assessing changes in physique.


Asunto(s)
Antropometría , Estudios Cruzados , Carbohidratos de la Dieta , Entrenamiento de Fuerza , Humanos , Masculino , Adulto , Entrenamiento de Fuerza/métodos , Antropometría/métodos , Adulto Joven , Carbohidratos de la Dieta/administración & dosificación , Músculo Esquelético , Grosor de los Pliegues Cutáneos , Composición Corporal , Dieta de Carga de Carbohidratos/métodos , Levantamiento de Peso/fisiología
3.
J Strength Cond Res ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39178108

RESUMEN

ABSTRACT: Homer, KA, Cross, MR, and Helms, ER. A survey of resistance training practices among physique competitors during peak week. J Strength Cond Res XX(X): 000-000, 2024-Physique athletes are ranked by their on-stage presentation of muscle size, proportionality, and leanness. To acutely maximize muscle size, competitors manipulate resistance training (RT) variables in the days before the contest, commonly referred to as peak week (PW). Resistance training manipulations during PW may act synergistically with nutrition strategies such as carbohydrate loading. However, because little information exists on changes made to RT during PW, the purpose of this research was to determine the current practices of physique athletes and whether competitor characteristics were predictive of the RT variables manipulated. A total of 104 responses to the RT section of a survey on PW nutrition and training were analyzed through a series of multiple logistic regression models to examine the relationship between RT manipulations and competitor characteristics. Furthermore, to determine the magnitude of differences between PW and the week before PW (WBPW) for these variables, a McNemar-Bowker test, paired t-tests, and Wilcoxon signed-rank tests were conducted for nominal, continuous, and discrete outcomes, respectively. For all statistical analyses, p <0.05 was deemed significant. Competitors generally adjusted RT in a variety of ways, where proximity-to-failure was the most frequently manipulated and training frequency was the least; however, no competitor characteristic predicted any of the RT variables manipulated. Within those who manipulated RT variables during PW, frequency, volume, and intensity decreased while repetition ranges of compound exercises increased, empirically confirming that competitors seek to reduce training stress during PW. Such findings can be incorporated in future experimental designs examining the efficacy of peaking strategies to enhance the generalizability of results.

4.
J Int Soc Sports Nutr ; 21(1): 2377178, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39007897

RESUMEN

BACKGROUND: Physique athletes are subjectively judged on their on-stage esthetic per their competition division criteria. To succeed, competitors look to acutely enhance their appearance by manipulating nutritional variables in the days leading up to competition, commonly referred to as peak week (PW). Despite their documented wide adoption, PW strategies lack experimental evidence. Further, the relationship between the specific strategies and the characteristics of the competitors who implement them are unknown. The aim of this research was to examine the effect of competitor characteristics on the specific nutritional peaking strategies implemented, the length of these strategies, and the range of daily carbohydrate (CHO) intakes during these strategies. METHODS: A 58-item survey was developed to gather information on peak week nutrition and training practices of physique athletes. A total of 160 respondents above the age of 18 who had competed in the last 5 years completed the nutrition section. The topics analyzed for this paper included competitor demographics, peaking strategies utilized, and PW CHO intakes. Competitor demographics are presented with the use of descriptive statistics. Associations between competitor demographics and peaking strategies implemented, peaking strategy length, and daily CHO intake ranges were assessed using multiple logistic regression, multiple ordinal logistic regression, and linear mixed models, respectively. RESULTS: From the sampled population, ages 24-39 years (71.2%), male (68.8%), natural (65%), and amateur (90%) were the most common characteristics from their respective categories, while mean competition preparation length was 20.35 ± 8.03 weeks (Males: 19.77 ± 7.56 weeks, Females: 21.62 ± 8.93 weeks), competition preparation body mass loss was 11.5 ± 5.56 kg (M: 12.7 ± 5.76 kg, F: 7.16 ± 3.99 kg), and competition body mass was 72.09 ± 15.74 kg (M: 80.15 ± 11.33 kg, F: 54.34 ± 7.16 kg). For males, the highest and lowest daily CHO intake during PW were 489.63 ± 224.03 g (6.22 ± 2.93 g/kg body mass) and 148.64 ± 152.01 g (1.94 ± 2.17 g/kg), respectively, while for females these values were 266.73 ± 131.23 g (5.06 ± 2.67 g/kg) and 94.42 ± 80.72 g (1.81 ± 1.57 g/kg), respectively. CHO back loading (45%) and water loading (40.6%) were the most popular peaking strategies, while the most prevalent peaking strategy length was 7 days (27.2%). None of the competitor characteristics predicted the use of CHO-based peaking strategies nor peaking strategy length. For non-CHO-based strategies, drug-enhanced competitors were more likely to restrict water than non-drug enhanced, while males and professional competitors had greater odds of loading sodium than females and amateurs, respectively. Finally, when comparing the disparity in highest and lowest CHO intakes during peak week, sex was the only significant factor. CONCLUSIONS: The results of this survey provide further information on the nutritional peaking strategies implemented by competitors. Certain characteristics were identified as predictors of sodium loading and water restriction, and the range of daily PW CHO intake. Contrastingly, no associations were found for CHO-based peaking strategies or peaking strategy length. While our analyses may be underpowered, and thus results should be interpreted with caution, it appears the nutritional peaking strategies implemented by physique competitors are seemingly complex and highly individual.


Asunto(s)
Carbohidratos de la Dieta , Fenómenos Fisiológicos en la Nutrición Deportiva , Humanos , Femenino , Masculino , Adulto , Adulto Joven , Carbohidratos de la Dieta/administración & dosificación , Atletas , Conducta Competitiva/fisiología , Encuestas y Cuestionarios , Rendimiento Atlético/fisiología
5.
Sports Med ; 54(6): 1399-1418, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38743173

RESUMEN

BACKGROUND: The inclusion of skateboarding in the Olympics suggests that athletes and coaches are seeking ways to enhance their chances of succeeding on the world stage. Understanding what constitutes performance, and what physical, neuromuscular, and biomechanical capacities underlie it, is likely critical to success. OBJECTIVE: The aim was to overview the current literature and identify knowledge gaps related to competitive skateboarding performance and associated physical, technical, and tactical demands of Olympic skateboarding disciplines. METHODS: A systematic scoping review was performed considering the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (Extension for Scoping Reviews) guidelines. Data sources were MEDLINE (Ovid), Scopus, SPORTDiscus, and PubMed. We included all peer-reviewed literature after 1970 describing the physiological, neuromuscular, biomechanical, and/or tactical aspects of skateboarding. RESULTS: Nineteen original articles explored the physiological (n = 9), biomechanical (n = 8), and technical (n = 10) demands of skateboarding. No research explored the tactical demands of competition. Moreover, although competitive males (n = 2 studies) and females (n = 1 study) were recruited as participants, no research directly related skateboarding demands to performance success in competitive environments. CONCLUSIONS: Ultimately, what constitutes and distinguishes competitive skateboarding is unexplored. There is some evidence indicating aspects of the sport require flexibility and elevated and fast force output of the lower limbs, which may be valuable when attempting to maximise ollie height. Nonetheless, a lack of ecological validity, such as using static ollie tests as opposed to rolling, restricted our ability to provide practical recommendations, and inconsistency of terminology complicated delineating discipline-specific outcomes. Future researchers should first look to objectively identify what skaters do in competition before assessing what qualities enable their performance.


Asunto(s)
Rendimiento Atlético , Conducta Competitiva , Patinación , Humanos , Patinación/fisiología , Rendimiento Atlético/fisiología , Fenómenos Biomecánicos , Fuerza Muscular
6.
Sports Med Open ; 10(1): 8, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218750

RESUMEN

BACKGROUND: Physique athletes are ranked by a panel of judges against the judging criteria of the corresponding division. To enhance on-stage presentation and performance, competitors in certain categories (i.e. bodybuilding and classic physique) achieve extreme muscle size and definition aided by implementing acute "peaking protocols" in the days before competition. Such practices can involve manipulating nutrition and training variables to increase intramuscular glycogen and water while minimising the thickness of the subcutaneous layer. Carbohydrate manipulation is a prevalent strategy utilised to plausibly induce muscle glycogen supercompensation and subsequently increase muscle size. The relationship between carbohydrate intake and muscle glycogen saturation was first examined in endurance event performance and similar strategies have been adopted by physique athletes despite the distinct physiological dissimilarities and aims between the sports. OBJECTIVES: The aim of this narrative review is to (1) critically examine and appraise the existing scientific literature relating to carbohydrate manipulation practices in physique athletes prior to competition; (2) identify research gaps and provide direction for future studies; and (3) provide broad practical applications based on the findings and physiological reasoning for coaches and competitors. FINDINGS: The findings of this review indicate that carbohydrate manipulation practices are prevalent amongst physique athletes despite a paucity of experimental evidence demonstrating the efficacy of such strategies on physique performance. Competitors have also been observed to manipulate water and electrolytes in conjunction with carbohydrate predicated on speculative physiological mechanisms which may be detrimental for performance. CONCLUSIONS: Further experimental evidence which closely replicates the nutritional and training practices of physique athletes during peak week is required to make conclusions on the efficacy of carbohydrate manipulation strategies. Quasi-experimental designs may be a feasible alternative to randomised controlled trials to examine such strategies due to the difficulty in recruiting the population of interest. Finally, we recommend that coaches and competitors manipulate as few variables as possible, and experiment with different magnitudes of carbohydrate loads in advance of competition if implementing a peaking strategy.

8.
Sports Med Open ; 9(1): 55, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37439876

RESUMEN

PURPOSE: To compare linear and curvilinear models describing the force-velocity relationship obtained in lower-limb acyclic extensions, considering experimental data on an unprecedented range of velocity conditions. METHODS: Nine athletes performed lower-limb extensions on a leg-press ergometer, designed to provide a very broad range of force and velocity conditions. Previously inaccessible low inertial and resistive conditions were achieved by performing extensions horizontally and with assistance. Force and velocity were continuously measured over the push-off in six resistive conditions to assess individual force-velocity relationships. Goodness of fit of linear and curvilinear models (second-order polynomial function, Fenn and Marsh's, and Hill's equations) on force and velocity data were compared via the Akaike Information Criterion. RESULTS: Expressed relative to the theoretical maximal force and velocity obtained from the linear model, force and velocity data ranged from 26.6 ± 6.6 to 96.0 ± 3.6% (16-99%) and from 8.3 ± 1.9 to 76.6 ± 7.0% (5-86%), respectively. Curvilinear and linear models showed very high fit (adjusted r2 = 0.951-0.999; SEE = 17-159N). Despite curvilinear models better fitting the data, there was a ~ 99-100% chance the linear model best described the data. CONCLUSION: A combination between goodness of fit, degrees of freedom and common sense (e.g., rational physiologically values) indicated linear modelling is preferable for describing the force-velocity relationship during acyclic lower-limb extensions, compared to curvilinear models. Notably, linearity appears maintained in conditions approaching theoretical maximal velocity. Using horizontal and assisted lower-limb extension to more broadly explore resistive/assistive conditions could improve reliability and accuracy of the force-velocity relationship and associated parameters.

9.
Int J Sports Physiol Perform ; 17(12): 1760-1768, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36368326

RESUMEN

When poor reliability of "output" variables is reported, it can be difficult to discern whether blame lies with the measurement (ie, the inputs) or the overarching concept. This commentary addresses this issue, using the force-velocity-power (FvP) profile in jumping to illustrate the interplay between concept, method, and measurement reliability. While FvP testing has risen in popularity and accessibility, some studies have challenged the reliability and subsequent utility of the concept itself without clearly considering the potential for imprecise procedures to impact reliability measures. To this end, simulations based on virtual athletes confirmed that push-off distance and jump-height variability should be <4% to 5% to guarantee well-fitted force-velocity relationships and acceptable typical error (<10%) in FvP outputs, which was in line with previous experimental findings. Thus, while arguably acceptable in isolation, the 5% to 10% variability in push-off distance or jump height reported in the critiquing studies suggests that their methods were not reliable enough (lack of familiarization, inaccurate procedures, or submaximal efforts) to infer underpinning force-production capacities. Instead of challenging only the concept of FvP relationship testing, an alternative conclusion should have considered the context in which the results were observed: If procedures' and/or tasks' execution is too variable, FvP outputs will be unreliable. As for some other neuromuscular or physiological testing, the FvP relationship, which magnifies measurement errors, is unreliable when the input measurements or testing procedures are inaccurate independently from the method or concept used. Field "simple" methods require the same methodological rigor as "lab" methods to obtain reliable output data.


Asunto(s)
Atletas , Prueba de Esfuerzo , Humanos , Prueba de Esfuerzo/métodos , Reproducibilidad de los Resultados , Fuerza Muscular/fisiología
10.
J Strength Cond Res ; 36(4): 1158-1161, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32058358

RESUMEN

ABSTRACT: Morin, JB, Capelo-Ramirez, F, Rodriguez-Pérez, MA, Cross, MR, and Jimenez-Reyes, P. Individual adaptation kinetics following heavy resisted sprint training. J Strength Cond Res 36(4): 1158-1161, 2022-The aim of this study was to test individual adaptation kinetics to a high-resistance sprint training program designed to improve maximal horizontal power (Pmax), and compare the group and individual results of a classical "pre-post" analysis, and a "pre-peak" approach. Thirteen male and 9 female trained sprinters had their 30-m sprint performance and mechanical outputs assessed 1 week before (PRE), and one (POST, W1), 2 (W2), 3 (W3) and 4 (W4) weeks after a 10-week training block (10 repetitions of 20-m resisted sprints at the load associated to the apex of their velocity-power relationship: i.e., 90 ± 10% body mass on average (range: 75-112%). We observed clearly different outcomes on all variables for the PRE-POST vs. PRE-PEAK analyses. The PRE-PEAK analysis showed a larger (almost double) increase in Pmax (9.98 ± 5.27% on average, p < 0.01) than the PRE-POST (5.39 ± 5.87%, p < 0.01). Individual kinetics of post-training adaptations show that peak values were not captured in the POST (W1) assessment (generally observed at W3 and W4). Finally, the week of greatest Pmax output differed strongly among subjects, with most subjects (7/22) peaking at W4. In conclusion, after a 10-week high-resistance sprint training block, a classical 1-week-PRE to 1-week-POST assessment could not capture peak adaptation, which differed among athletes. Adopting a similar approach in practice or research should improve insight into the true effects of training stimuli on athletic capabilities.


Asunto(s)
Rendimiento Atlético , Entrenamiento de Fuerza , Carrera , Atletas , Femenino , Humanos , Cinética , Masculino , Entrenamiento de Fuerza/métodos
11.
Int J Sports Physiol Perform ; 16(10): 1545-1550, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33883292

RESUMEN

PURPOSE: The purpose of this study was to determine the test-retest reliability of the 80s-slide-test in well-trained alpine ski racers. METHODS: The sample consisted of 8 well-trained alpine ski racers (age = 17.8 [0.7] y old; height = 1.80 [0.09] m; body mass = 72.1 [9.5] kg) who performed a lab-based maximal graded test on cycle ergometer and three 80s-slide-tests in 4 separate sessions. The 80s-slide-test consisting of maximal push-offs performed for 80s on a 8-ft slide board. Oxygen uptake (V˙O2) and heart rate (HR) were recorded continuously. Blood lactate ([La]b) was determined immediately prerun, followed by 3 minutes postrun. Three minutes after the completion of the session, the subjects were asked to indicate their rate of perceived exertion using Borg scale ranging from 6 to 20. Total and every 10s mean push-offs number were assessed by camera. Typical errors of measurement, intraclass correlation coefficients, and smallest worthwhile change were calculated. RESULTS: The 80s-slide-test showed strong reliability for total push-offs number, V˙O2peak, V˙O2mean, HRpeak, and HRmean. Δ[La]b, fatigue index, and the rate of perceived exertion were moderately reliable. CONCLUSION: The 80s-slide-test is a reliable test for well-trained alpine ski racers and can be used easily by trainers.


Asunto(s)
Esquí , Adolescente , Fatiga , Frecuencia Cardíaca/fisiología , Humanos , Reproducibilidad de los Resultados , Esquí/fisiología
12.
J Sports Sci ; 39(16): 1882-1892, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33792497

RESUMEN

In jumping, countermovement increases net propulsive force and improves performance. We aimed to test whether this countermovement effect is velocity specific and examine the degree to which this varies between athletes, sports or performance levels. Force-velocity profiles were compiled in high-level skiers (N= 23) and sprinters (N= 30), with their performance represented in their overall world ranking and season-best 100 m time, respectively. Different ratios between force-velocity variables were computed from squat and countermovement jumps (smaller = less effect): jump height (CRh), maximum power (CRP), force (CRF), and velocity (CRv). Countermovement effect differed per velocity (inverse relationship between CRF and CRv, rs = -0.74, p< .001), and variation force-velocity profiles with countermovement. Skiers exhibited smaller CRF (rrb = -0.675, p< .001), sprinters smaller CRv (rrb = 0.426, p= .008), and "moderate" velocity conditions did not differentiate groups (CRP or CRh, p> .05). 33% of the variance in skiers' performance level was explained by greater maximum force and a lower CRF (i.e., high explosiveness at low-velocities without countermovement), without an association for sprinters. Countermovement effect appears specific to movement velocity, sport and athlete level. Consequently, we advise sports-specific assessment, and potentially training to reduce the countermovement effect per the relevant velocity.


Asunto(s)
Rendimiento Atlético/fisiología , Movimiento/fisiología , Fuerza Muscular/fisiología , Carrera/fisiología , Esquí/fisiología , Prueba de Esfuerzo , Humanos , Masculino
13.
PLoS One ; 16(1): e0244698, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33444398

RESUMEN

Alpine ski racers require diverse physical capabilities. While enhanced force production is considered key to high-level skiing, its relevance is convoluted. The aims of this study were to i) clarify the association between performance path length and velocity, ii) test the importance of radial force, and iii) explore the contribution of force magnitude and orientation to turn performance. Ski athletes (N = 15) were equipped with ski-mounted force plates and a global navigation satellite system to compute the following variables over 14 turns: path length (L), velocity normalized energy dissipation [Δemech/vin], radial force [Fr], total force (both limbs [Ftot], the outside limb, and the difference between limbs), and a ratio of force application (RF = Fr/Ftot). Data were course-averaged or separated into sectional turn groupings, averaged, and entered into stepped correlation and regression models. Our results support Δemech/vin as a discriminative performance factor (R2 = 0.50-0.74, p < .003), except in flat sections. Lower course times and better Δemech/vin were associated with greater Fr (R2 = 0.34-0.69 and 0.31-0.52, respectively, p < .032), which was related to both Ftot and RF (ß = 0.92-1.00 and 0.63-0.81, respectively, p < .001) which varied in predictive order throughout the sections. Ftot was associated with increased outside limb force and a more balanced contribution of each limb (ß = 1.04-1.18 and -0.65- -0.92, respectively, p < .001). Fr can be improved by either increasing total force output or by increasing technical effectiveness (i.e., proportionally more force radially) which should increase the trajectories available to the skier on the ski course.


Asunto(s)
Rendimiento Atlético , Esquí , Aceleración , Adulto , Atletas , Fenómenos Biomecánicos , Humanos , Adulto Joven
14.
J Strength Cond Res ; 35(11): 3084-3089, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31972825

RESUMEN

ABSTRACT: Cahill, MJ, Oliver, JL, Cronin, JB, Clark, KP, Cross, MR, and Lloyd, RS. Sled-push load-velocity profiling and implications for sprint training prescription in young athletes. J Strength Cond Res 35(11): 3084-3089, 2021-Resisted sled pushing is a popular method of sprint-specific training; however, little evidence exists to support the prescription of resistive loads in young athletes. The purpose of this study was to determine the reliability and linearity of the force-velocity relationship during sled pushing, as well as the amount of between-athlete variation in the load required to cause a decrement in maximal velocity (Vdec) of 25, 50, and 75%. Ninety (n = 90) high school, male athletes (age 16.9 ± 0.9 years) were recruited for the study. All subjects performed 1 unresisted and 3 sled-push sprints with increasing resistance. Maximal velocity was measured with a radar gun during each sprint and the load-velocity (LV) relationship established for each subject. A subset of 16 subjects examined the reliability of sled pushing on 3 separate occasions. For all individual subjects, the LV relationship was highly linear (r > 0.96). The slope of the LV relationship was found to be reliable (coefficient of variation [CV] = 3.1%), with the loads that cause a decrement in velocity of 25, 50, and 75% also found to be reliable (CVs = <5%). However, there was large between-subject variation (95% confidence interval) in the load that caused a given Vdec, with loads of 23-42% body mass (%BM) causing a Vdec of 25%, 45-85 %BM causing a Vdec of 50%, and 69-131 %BM causing a Vdec of 75%. The Vdec method can be reliably used to prescribe sled-push loads in young athletes, but practitioners should be aware that the load required to cause a given Vdec is highly individualized.


Asunto(s)
Rendimiento Atlético , Entrenamiento de Fuerza , Carrera , Adolescente , Atletas , Humanos , Masculino , Prescripciones , Reproducibilidad de los Resultados , Entrenamiento de Fuerza/métodos
15.
J Strength Cond Res ; 34(10): 2751-2759, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32773545

RESUMEN

Cahill, MJ, Oliver, JL, Cronin, JB, Clark, K, Cross, MR, Lloyd, RS, and Lee, JE. Influence of resisted sled-pull training on the sprint force-velocity profile of male high-school athletes. J Strength Cond Res 34(10): 2751-2759, 2020-Although resisted sled towing is a commonly used method of sprint-specific training, little uniformity exists around training guidelines for practitioners. The aim of this study was to assess the effectiveness of unresisted and resisted sled-pull training across multiple loads. Fifty-three male high-school athletes were assigned to an unresisted (n = 12) or 1 of 3 resisted groups: light (n = 15), moderate (n = 14), and heavy (n = 12) corresponding to loads of 44 ± 4 %BM, 89 ± 8 %BM, and 133 ± 12 %BM that caused a 25, 50, and 75% velocity decrement in maximum sprint speed, respectively. All subjects performed 2 sled-pull training sessions twice weekly for 8 weeks. Split times of 5, 10, and 20 m improved across all resisted groups (d = 0.40-1.04, p < 0.01) but did not improve with unresisted sprinting. However, the magnitude of the gains increased most within the heavy group, with the greatest improvement observed over the first 10 m (d ≥ 1.04). Changes in preintervention to postintervention force-velocity profiles were specific to the loading prescribed during training. Specifically, F0 increased most in moderate to heavy groups (d = 1.08-1.19); Vmax significantly decreased in the heavy group but increased in the unresisted group (d = 012-0.44); whereas, Pmax increased across all resisted groups (d = 0.39-1.03). The results of this study suggest that the greatest gains in short distance sprint performance, especially initial acceleration, are achieved using much heavier sled loads than previously studied in young athletes.


Asunto(s)
Atletas , Rendimiento Atlético/fisiología , Entrenamiento de Fuerza/métodos , Carrera/fisiología , Aceleración , Adolescente , Humanos , Masculino
16.
Sports (Basel) ; 8(5)2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-32466235

RESUMEN

We tested the hypothesis that the degree of adaptation to highly focused sprint training at opposite ends of the sprint Force-Velocity (FV) spectrum would be associated with initial sprint FV profile in rugby athletes. Training-induced changes in sprint FV profiles were computed before and after an eight-week in-season resisted or assisted sprint training protocol, including a three-week taper. Professional male rugby players (age: 18.9 ± 1.0 years; body height: 1.9 ± 0.0 m; body mass: 88.3 ± 10.0 kg) were divided into two groups based on their initial sprint FV profiles: 1) Heavy sled training (RESISTED, N = 9, velocity loss 70-80%), and 2) assisted acceleration training (ASSISTED, N = 12, velocity increase 5-10%). A total of 16 athletes were able to finish all required measurements and sessions. According to the hypothesis, a significant correlation was found between initial sprint FV profile and relative change in sprint FV profile (RESISTED: r = -0.95, p < 0.01, ASSISTED: r = -0.79, p < 0.01). This study showed that initial FV properties influence the degree of mechanical response when training at different ends of the FV spectrum. Practitioners should consider utilizing the sprint FV profile to improve the individual effectiveness of resisted and assisted sprint training programs in high-level rugby athletes.

17.
Scand J Med Sci Sports ; 30(3): 442-449, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31742795

RESUMEN

Sled pushing is a commonly used form of resisted sprint training; however, little empirical evidence exists, especially in youth populations. The aim of this study was to assess the effectiveness of unresisted and resisted sled pushing across multiple loads. Fifty high school athletes were assigned to an unresisted (n = 12), or 3 resisted groups; light (n = 14), moderate (n = 13), and heavy (n = 11) resistance that caused a 25%, 50%, and 75% velocity decrement in maximum sprint speed, respectively. All participants performed two sled-push training sessions twice weekly for 8 weeks. Before and after the training intervention, the participants performed a series of jump, strength, and sprint testing to assess athletic performance. Split times between 5 and 20 m improved significantly across all resisted groups (all P < .05, d = 0.34-1.16) but did not improve significantly with unresisted sprinting. For all resisted groups, gains were greatest over the first 5 m (d = 0.67-0.84) and then diminished over each subsequent 5 m split (d = 0.08-0.57). The magnitude of gains in split times was greatest within the heavy group. Small but non-significant within-group effects were found in pre to post force-velocity profiles. There was a main effect of time but no interaction effects as all groups increased force and power, although the greatest increases were observed with the heavy load (d = 0.50-0.51). The results of this study suggest that resisted sled pushing with any load was superior to unresisted sprint training and that heavy loads may elicit the greatest gains in sprint performance over short distances.


Asunto(s)
Rendimiento Atlético , Entrenamiento de Fuerza/métodos , Adolescente , Atletas , Prueba de Esfuerzo , Humanos , Masculino , Entrenamiento de Fuerza/instrumentación
18.
J Strength Cond Res ; 34(4): 1040-1051, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30789570

RESUMEN

Lenetsky, S, Brughelli, M, Nates, RJ, Neville, JG, Cross, MR, and Lormier, AV. Defining the phases of boxing punches: A mixed-method approach. J Strength Cond Res 34(4): 1040-1051, 2020-Current research on punching in boxing has explored both kinematic and kinetic variables; however, there is no shared structure in the literature to describe these findings. A common method used to provide a shared structure in other sporting tasks is the definition of movement phases. To define the phases of 4 punches used in boxing (lead punches and rear straight and hook punches), 10 experienced and competitive boxers (age = 25.6 ± 5.97 years, height = 179.5 ± 7.72 cm, body mass = 95.66 ± 21.82 kg, and years training = 10.3 ± 5.97 years) were tested while performing maximal-effort punches. Ground reaction forces (GRFs), electromyographic, high-speed video (HSV), and striking dynamometry data were collected during all punches. A mixed-method approach was used to define the phases for each punch type based on the GRF measurements and impact timing from the striking dynamometer. Electromyographic and HSV data were then used to develop a more holistic understanding of punching actions by elaborating on the description of each phase. The final outcome of this approach has produced definitions for the phases of straight and hook punches, a greater qualitative understanding of said punches, and most importantly, a structure for current and future punching-related research, and a context to improve coach/sport scientist communication.


Asunto(s)
Boxeo/fisiología , Movimiento/fisiología , Adulto , Fenómenos Biomecánicos , Electromiografía , Humanos , Masculino , Dinamómetro de Fuerza Muscular , Deportes , Grabación de Cinta de Video , Adulto Joven
19.
J Biomech ; 94: 82-87, 2019 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-31376978

RESUMEN

Measuring the ground reaction forces (GRF) underlying sprint acceleration is important to understanding the performance of such a common task. Until recently direct measurements of GRF during sprinting were limited to a few steps per trial, but a simple method (SM) was developed to estimate GRF across an entire acceleration. The SM utilizes displacement- or velocity-time data and basic computations applied to the runner's center of mass and was validated against compiled force plate (FP) measurements; however, this validation used multiple-trials to generate a single acceleration profile, and consequently fatigue and error may have introduced noise into the analyses. In this study, we replicated the original validation by comparing the main sprint kinetics and force-velocity-power variables (e.g. GRF and its horizontal and vertical components, mechanical power output, ratio of horizontal component to resultant GRF) between synchronized FP data from a single sprinting acceleration and SM data derived from running velocity measured with a 100 Hz laser. These analyses were made possible thanks to a newly developed 50-m FP system providing seamless GRF data during a single sprint acceleration. Sixteen trained male sprinters performed two all-out 60-m sprints. We observed good agreement between the two methods for kinetic variables (e.g. grand average bias of 4.71%, range 0.696 ±â€¯0.540-8.26 ±â€¯5.51%), and high inter-trial reliability (grand average standard error of measurement of 2.50% for FP and 2.36% for the SM). This replication study clearly shows that when implemented correctly, this method accurately estimates sprint acceleration kinetics.


Asunto(s)
Carrera/fisiología , Aceleración , Adulto , Rendimiento Atlético , Fenómenos Biomecánicos , Fatiga , Humanos , Cinética , Masculino , Reproducibilidad de los Resultados , Adulto Joven
20.
Sports (Basel) ; 7(5)2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-31137511

RESUMEN

The purpose of this study was to examine the usefulness of individual load-velocity profiles and the between-athlete variation using the decrement in maximal velocity (Vdec) approach to prescribe training loads in resisted sled pulling in young athletes. Seventy high school, team sport, male athletes (age 16.7 ± 0.8 years) were recruited for the study. All participants performed one un-resisted and four resisted sled-pull sprints with incremental resistance of 20% BM. Maximal velocity was measured with a radar gun during each sprint and the load-velocity relationship established for each participant. A subset of 15 participants was used to examine the reliability of sled pulling on three separate occasions. For all individual participants, the load-velocity relationship was highly linear (r > 0.95). The slope of the load-velocity relationship was found to be reliable (coefficient of variation (CV) = 3.1%), with the loads that caused a decrement in velocity of 10, 25, 50, and 75% also found to be reliable (CVs = <5%). However, there was a large between-participant variation (95% confidence intervals (CIs)) in the load that caused a given Vdec, with loads of 14-21% body mass (% BM) causing a Vdec of 10%, 36-53% BM causing a Vdec of 25%, 71-107% BM causing a Vdec of 50%, and 107-160% BM causing a Vdec of 75%. The Vdec method can be reliably used to prescribe sled-pulling loads in young athletes, but practitioners should be aware that the load required to cause a given Vdec is highly individualized.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA