Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 14(9): 11708-11717, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35195997

RESUMEN

The widespread use of nonfullerene-based electron-accepting materials has triggered a rapid increase in the performance of organic photovoltaic devices. However, the number of efficient acceptor compounds available is rather limited, which hinders the discovery of new, high-performing donor:acceptor combinations. Here, we present a new, efficient electron-accepting compound based on a hitherto unexplored family of well-known molecules: gold porphyrins. The electronic properties of our electron-accepting gold porphyrin, named VC10, were studied by UV-Vis spectroscopy and by cyclic voltammetry (CV) , revealing two intense optical absorption bands at 500-600 and 700-920 nm and an optical bandgap of 1.39 eV. Blending VC10 with PTB7-Th, a donor polymer, which gives rise to an absorption band at 550-780 nm complementary to that of VC10, enables the fabrication of organic solar cells (OSCs) featuring a power conversion efficiency of 9.24% and an energy loss of 0.52 eV. Hence, this work establishes a new approach in the search for efficient acceptor molecules for solar cells and new guidelines for future photovoltaic material design.

2.
ChemSusChem ; 14(17): 3494-3501, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-33274829

RESUMEN

The effect of central donor core on the properties of A-π-D-π-A donors, where D is a porphyrin macrocycle, cyclopenta[2,1-b:3,4-b']dithiophene is the π bridge, and A is a dicyanorhodanine terminal unit, was investigated for the fabrication of the organic solar cells (OSCs), along [6,6]-phenyl-C71-butyric acid methyl ester (PC71 BM) as electron acceptor. A new molecule consisting of Ni-porphyrin central donor core (VC9) showed deep HOMO energy level and OSCs based on optimized VC9:PC71 BM realized overall power conversion efficiency (PCE) of 10.66 % [short-circuit current density (JSC )=15.48 mA/cm2 , fill factor (FF)=0.65] with high open circuit voltage (VOC ) of 1.06 V and very low energy loss of 0.49 eV, whereas the Zn-porphyrin analogue VC8:PC71 BM showed PCE of 9.69 % with VOC of 0.89 V, JSC of 16.25 mA/cm2 and FF of 0.67. Although the OSCs based on VC8 showed higher JSC in comparison to VC9, originating from the broader absorption profile of VC8 that led to more exciton generation, the higher value of PCE of VC9 is owing to the higher VOC and reduced energy loss.

3.
ACS Appl Mater Interfaces ; 11(7): 7216-7225, 2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30680994

RESUMEN

Two D-A-D small molecules with a DPP acceptor core and Zn-porphyrin donor with different electron-donating substituents, namely, 2,6-bis(dodecyloxy)phenyl and 5-hexylthieno[3,2- b]thiophen-2-yl at mesopositions, VC4 and VC5, were synthesized, and their optical and electrochemical properties were investigated. The results reveal that both molecules are suitable as donors for organic solar cells (OSCs) in which PC71BM is employed as the acceptor. Overall power conversion efficiencies of 8.05% ( Jsc = 13.83 mA/cm2, Voc = 0.91 V, and FF = 0.64) and 8.89% ( Jsc = 16.98 mA/cm2, Voc = 0.79 V, and FF = 0.663) were obtained, respectively. The high Voc value for the VC4-based OSC correlates with the deeper HOMO, whereas the high Jsc value for VC5 may be attributed to the extended absorption spectrum toward the longer wavelength region. Moreover, the relatively high FF value for VC5-based OSCs as compared to the VC4 counterparts may be related to the more balanced charge transport in the active layer, reduced charge recombination, and efficient charge collection. The energy loss for VC5 is smaller (0.52 eV) than that for VC4 (0.56 eV).

4.
ACS Appl Mater Interfaces ; 9(13): 11739-11748, 2017 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-28287699

RESUMEN

Herein we report the synthesis of a novel A-D-A-D-A non-fullerene small-molecule acceptor (NFSMA) bearing a diketopyrrolopyrrole (DPP) acceptor central core coupled to terminal rhodanine acceptors via a thiophene donor linker (denoted as MPU1) for use in non-fullerene polymer solar cells (PSCs). This NFSMA exhibits a narrow optical band gap (1.48 eV), strong absorption in the 600-800 nm wavelength region of the solar spectrum, and a lowest unoccupied energy level of -3.99 eV. When the mixture of a medium band gap D-A copolymer P (1.75 eV) was used as donor and MPU1 as acceptor, the blend film showed a broad absorption profile from 400 to 850 nm, beneficial for light harvesting efficiency of the resulted polymer solar cell. After optimization of the donor-to-acceptor weight ratios and concentration of solvent additive, the P-MPU1-based PSC exhibited a power conversion efficiency of 7.52% (Jsc= 12.37 mA/cm2, Voc = 0.98 V, and fill factor = 0.62), which is much higher than that for a P3HT-MPU1-based device (2.16%) prepared under identical conditions. The higher value for the P-MPU1-based device relative to the P3HT-MPU1-based one is related to the low energy loss and more balanced charge transport in the device based on the P donor. These results indicate that alteration of the absorption spectra and electrochemical energy levels of non-fullerene acceptors, and appropriate selection of the polymer donor with complementary absorption profile, is a promising means to further boost the performance of PSCs.

5.
Chem Commun (Camb) ; 52(90): 13205-13208, 2016 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-27713942

RESUMEN

A single isomer of a pyrazolinofullerene bis-adduct was prepared by tether-directed remote functionalization. Specifically, a macrocyclization reaction between C60 and a bis-hydrazone reagent has been carried out to generate a regioisomerically pure fullerene bis-adduct which presents a lower LUMO than pristine C60.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA