Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
J Hazard Mater ; 478: 135512, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39151361

RESUMEN

Microplastics (MPs) and nanoplastics (NPs) present in wastewater can pose a negative impact to aerobic granular sludge (AGS). Herein, this study found that MPs and NPs (20 mg/L) deteriorated the sludge settleability and granule integrity, resulting in a 15.7 % and 21.9 % decrease in the total nitrogen removal efficiency of the AGS system, respectively. This was possibly due to the reduction of the extracellular polymeric substances (EPS) content. The subsequent analysis revealed that tyrosine, tryptophan, and humic acid-like substances in EPS exhibited a higher propensity for chemisorption and inhomogeneous multilayer adsorption onto NPs compared to MPs. The binding of EPS onto the surface of plastic particles increased the electronegativity of the MPs, but facilitated the aggregation of NPs through reducing the electrostatic repulsion, thereby mitigating the adverse effects of MPs/NPs on the AGS stability. Additionally, comprehensive analysis of the extended Derjaguin-Landau-Verwey-Overbeek theory indicated that the suppressed aggregation of microorganisms was the internal mechanisms contributing to the inadequate stability of AGS induced by MPs/NPs. This study provides novel insights into the detrimental mechanisms of MPs/NPs on the AGS stability, highlighting the key role of EPS in maintaining the structural stability of AGS when exposed to MPs/NPs.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Microplásticos , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Aguas del Alcantarillado/química , Microplásticos/toxicidad , Microplásticos/química , Matriz Extracelular de Sustancias Poliméricas/química , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Aerobiosis , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad , Adsorción , Nitrógeno/química , Nanopartículas/química , Nanopartículas/toxicidad , Eliminación de Residuos Líquidos/métodos , Plásticos/química
2.
Sci Total Environ ; 946: 174457, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38969137

RESUMEN

Ultrafiltration (UF) is widely used in drinking water plants, nevertheless, it still encounters challenges stemming from inevitable membrane fouling caused by natural organic matter (NOM). Herein, this work applied VUV/PS as UF membrane pretreatment and used UV/PS for comparison. VUV/PS system exhibited superior ability in removing NOM compared to UV/PS system. HO and SO4- played crucial roles in the degradation. [SO4-]ss was notably higher than [HO]ss in the systems, yet HO was of greater significance. [HO]ss and [SO4-]ss in the VUV/PS process were remarkably higher than those in the UV/PS process, due to the function of 185 nm photons. VUV/PS pretreatment basically recovered flux and effectively reduced fouling resistance, with better performance than UV/PS. Fouling mechanism was dominated by multiple mechanisms after UV/PS pretreatment, whereas it was transformed into pore blockage after VUV/PS pretreatment. Moreover, the UF effluent quality after VUV/PS pretreatment outperformed that of UV/PS but fell short of that without pretreatment, possibly due to the generation of abundant low MW substances under the action of HO and SO4-. After chlorine disinfection, UV/PS and VUV/PS pretreatments increased the DBPs production and cytotoxicity. Specifically, oxidant PS affected the membrane surface morphology and fouling behaviors, and had no obvious effect on interception performance and mechanical properties. In actual water treatment, VUV/PS and UV/PS pretreatments exhibited excellent performance in alleviating membrane fouling, improving water quality, and reducing DBPs formation and acute toxicity.

3.
J Agric Food Chem ; 72(31): 17176-17190, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39067070

RESUMEN

Water scarcity and land infertility pose significant challenges to agricultural development, particularly in arid and semiarid regions. Improving soil-water-retention capacity and fertilizer utilization efficiency through the application of soil additives has become a pivotal approach in agricultural practices. Hydrogels exhibit exceptional water absorption and fertilizer retention capabilities, making them extensively utilized in the fields of agriculture, forestry, and desert control. Currently, most reviews primarily focus on the raw materials, classification, synthesis methods, and application prospects of hydrogels, with limited attention given to strategies for enhancing water-retention performance, mechanisms underlying fertilizer absorption, and environmental risks. This review covers the commonly used cross-linking methods in hydrogel synthesis and the structure-activity relationship between hydrogels and water as well as fertilizer. Additionally, a thorough analysis of the ecological benefits and risks associated with hydrogels is presented. Finally, future prospects and challenges are delineated from the perspectives of material design and engineering applications.


Asunto(s)
Fertilizantes , Hidrogeles , Suelo , Agua , Fertilizantes/análisis , Hidrogeles/química , Agua/química , Suelo/química , Agricultura/métodos
4.
J Hazard Mater ; 476: 134966, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38901255

RESUMEN

Ultrafiltration (UF) is widely used in drinking water plants; however, membrane fouling is unavoidable. Natural organic matter (NOM) is commonly considered as an important pollutant that causes membrane fouling. Herein, we proposed VUV/H2O2 as a UF pretreatment and used UV/H2O2 for comparison. Compared to UV/H2O2, the VUV/H2O2 system presented superior NOM removal. In the VUV/H2O2 system, the steady-state concentration of HO• was approximately twice that in the UV/H2O2 system, which was ascribed to the promoting effect of the 185 nm photons. Specifically, 185 nm photons promoted HO• generation by decomposing mainly H2O at a low H2O2 dose or by decomposing mainly H2O2 at a high H2O2 dose. The VUV/H2O2 pretreatment also demonstrated better membrane fouling mitigation performance than did UV/H2O2. An increase in the H2O2 dose promoted HO• generation, thereby enhancing the performance of NOM degradation and membrane fouling alleviation and shifting the major membrane fouling mechanism from cake filtration to standard blocking. The VUV/H2O2 (0.60 mM) pretreatment effectively reduced disinfection byproducts (DBPs) formation during chlorine disinfection. Additionally, the oxidant H2O2 affected the membrane surface morphology and performance but had no evident effect on the mechanical properties. In actual water treatment, the VUV/H2O2 pretreatment exhibited better performance than the UV/H2O2 pretreatment in easing membrane fouling, ameliorating water quality, and reducing DBPs formation and acute toxicity.


Asunto(s)
Desinfección , Peróxido de Hidrógeno , Ultrafiltración , Rayos Ultravioleta , Purificación del Agua , Peróxido de Hidrógeno/química , Purificación del Agua/métodos , Desinfección/métodos , Membranas Artificiales , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/química , Desinfectantes/toxicidad , Desinfectantes/química , Cloro/química , Cloro/toxicidad , Aliivibrio fischeri/efectos de los fármacos
5.
Harmful Algae ; 134: 102623, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38705613

RESUMEN

Microcystins release from bloom-forming cyanobacteria is considered a way to gain competitive advantage in Microcystis populations, which threaten water resources security and aquatic ecological balance. However, the effects of microcystins on microalgae are still largely unclear. Through simulated culture experiments and the use of UHPLC-MS-based metabolomics, the effects of two microcystin-LR (MC-LR) concentrations (400 and 1,600 µg/L) on the growth and antioxidant properties of three algae species, the toxic Microcystis aeruginosa, a non-toxic Microcystis sp., and Chlorella vulgaris, were studied. The MC-LR caused damage to the photosynthetic system and activated the protective mechanism of the photosynthetic system by decreasing the chlorophyll-a and carotenoid concentrations. Microcystins triggered oxidative stress in C. vulgaris, which was the most sensitive algae species studied, and secreted more glycolipids into the extracellular compartment, thereby destroying its cell structure. However, C. vulgaris eliminated reactive oxygen species (ROS) by secreting terpenoids, thereby resisting oxidative stress. In addition, two metabolic pathways, the vitamin B6 and the sphingolipid pathways, of C. vulgaris were significantly disturbed by microcystins, contributing to cell membrane and mitochondrial damage. Thus, both the low (400 µg/L) and the high (1,600 µg/L) MC-LR concentration inhibited algae growth within 3 to 7 days, and the inhibition rates increased with the increase in the MC-LR concentration. The above results indicate that the toxin-producing Microcystis species have a stronger toxin tolerance under longer-term toxin exposure in natural water environments. Thus, microcystins participates in interspecific interaction and phytoplankton population regulation and creates suitable conditions for the toxin-producing M. aeruginosa to become the dominant species in algae blooms.


Asunto(s)
Antioxidantes , Toxinas Marinas , Microcistinas , Microcystis , Fotosíntesis , Microcistinas/metabolismo , Fotosíntesis/efectos de los fármacos , Antioxidantes/metabolismo , Microcystis/efectos de los fármacos , Microcystis/crecimiento & desarrollo , Microcystis/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Chlorella vulgaris/efectos de los fármacos , Chlorella vulgaris/crecimiento & desarrollo , Chlorella vulgaris/metabolismo , Clorofila A/metabolismo
6.
Sci Total Environ ; 923: 171465, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38453086

RESUMEN

Dissolved organic matter (DOM) is one of the most important fluxes in the global carbon cycle but its response to light exposure remains unclear at a molecular-level. The chemical response of DOM to light should vary with its molecular composition and environmental conditions while some basic hypotheses are still unclear, such as the balance between photobleaching and photo-humification and the question of oxidative properties. Here we exposed aquatic DOM from diverse freshwaters impacted by different levels of anthropogenic activity and algal exudates to environmentally-realistic light conditions. We found that photobleaching occurred in DOM with relatively high initial humic content producing low H/C molecules, whereas DOM with low initial humic content was humified. DOM pools with relatively high initial saturation and low aromaticity were prone to transform towards more unsaturated molecular formulae and high H/C molecules with a distinct decrease of bioavailability. Photo-transformation was mainly influenced by reactive intermediates, with reactive oxygen species (ROS) playing a dominant role in humification when the initial humus content of DOM was high. In contrast, for algal DOM with high protein content, it was likely that the autoxidation of excited state DOM was more important than indirect oxidation involving ROS. Our results reveal how photo-transformation patterns depend on the initial composition of DOM and provide new insights into the role of photochemical processes in biogeochemical cycling of DOM.

7.
Chemosphere ; 352: 141350, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309601

RESUMEN

Excessive phosphorus (P) enters the water bodies via wastewater discharges or agricultural runoff, triggering serious environmental problems such as eutrophication. In contrast, P as an irreplaceable key resource, presents notable supply-demand contradictions due to ineffective recovery mechanisms. Hence, constructing a system that simultaneously reduce P contaminants and effective recycling has profound theoretical and practical implications. Metal element-based adsorbents, including metal (hydro) oxides, layered double hydroxides (LDHs) and metal-organic frameworks (MOFs), exhibit a significant chaperone effect stemming from strong orbital hybridization between their intrinsic Lewis acid sites and P (Lewis base). This review aims to parse the structure-effect relationship between metal element-based adsorbents and P, and explores how to optimize the P removal properties. Special emphasis is given to the formation of the metal-P chemical bond, which not only depends on the type of metal in the adsorbent but also closely relates to its surface activity and pore structure. Then, we delve into the intrinsic mechanisms behind these adsorbents' remarkable adsorption capacity and precise targeting. Finally, we offer an insightful discussion of the prospects and challenges of metal element-based adsorbents in terms of precise material control, large-scale production, P-directed adsorption and effective utilization.


Asunto(s)
Fósforo , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Metales , Aguas Residuales , Hidróxidos , Adsorción
8.
J Environ Manage ; 351: 119785, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38081086

RESUMEN

Membrane fouling induced by natural organic matter (NOM) has seriously affected the further extensive application of ultrafiltration (UF). Herein, a simple, green and robust vacuum ultraviolet (VUV) technology was adopted as pretreatment before UF and ultraviolet (UV) technology was used for comparison. The results showed that control effect of VUV pretreatment on membrane fouling was better than that of UV pretreatment, as evidenced by the increase of normalized flux from 0.27 to 0.38 and 0.73 after 30 min UV or VUV pretreatment, respectively. This is related to the fact that VUV pretreatment exhibited stronger NOM degradation ability than UV pretreatment owing to the formation of HO•. The steady-state concentration of HO• was calculated as 3.04 × 10-13 M and the cumulative exposure of HO• reached 5.52 × 10-10 M s after 30 min of VUV irradiation. And the second-order rate constant between NOM and HO• was determined as 1.36 × 104 L mg-1 s-1. Furthermore, fluorescence EEM could be applied to predict membrane fouling induced by humic-enriched water. Standard blocking and cake filtration were major fouling mechanisms. Moreover, extension of UV pretreatment time increased the disinfection by-products (DBPs) formation, the DBPs concentration was enhanced from 322.36 to 1187.80 µg/L after 210 min pretreatment. However, VUV pretreatment for 150 min reduced DBPs content to 282.57 µg/L, and DBPs content continued to decrease with the extension of pretreatment time, revealing that VUV pretreatment achieved effective control of DBPs. The variation trend of cytotoxicity and health risk of DBPs was similar to that of DBPs concentration. In summary, VUV pretreatment exhibited excellent effect on membrane fouling alleviation, NOM degradation and DBPs control under a certain pretreatment time.


Asunto(s)
Desinfección , Purificación del Agua , Purificación del Agua/métodos , Ultrafiltración/métodos , Vacio , Rayos Ultravioleta , Membranas Artificiales
9.
Water Res ; 246: 120739, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37844340

RESUMEN

Hydrogen peroxide (H2O2), which accumulates in water and triggers oxidative stress for aquatic microbes, has been shown to have profound impacts on planktonic microbial community dynamics including cyanobacterial bloom formation. Yet, potential effects of H2O2 on interspecific relationships of phytoplankton-microbe symbiotic interactions remain unclear. Here, we investigated effects of environmentally relevant H2O2 concentrations on interspecific microbial relationships in algae-microbe symbiosis. Microbes play a crucial role in the competition between M. aeruginosa and Chlorella vulgaris at low H2O2 concentrations (∼400 nM), in which fungi and bacteria protect Microcystis aeruginosa from oxidative stress. Moreover, H2O2 stimulated the synthesis and release of extracellular microcystin-LR from Microcystis aeruginosa, while intracellular microcystin-LR concentrations remained at a relatively constant level. In the presence of H2O2, loss of organoheterocyclic compounds, organic acids and ketones contributed to the growth of M. aeruginosa, but the reduction of vitamins inhibited it. Regulation of interspecific relationships by H2O2 is achieved by its action on fungal species and bacterial secretory metabolites. This study explored the response of phytoplankton interspecific relationships in symbiotic phytoplankton-microbe interactions to environmentally relevant H2O2 concentrations stress, providing a theoretical basis for understanding the formation of harmful-algae blooming and impact of photochemical properties of water on aquatic ecological safety and stability.


Asunto(s)
Chlorella vulgaris , Cianobacterias , Microcystis , Fitoplancton , Peróxido de Hidrógeno/farmacología , Simbiosis , Microcystis/metabolismo , Agua , Hongos , Microcistinas/metabolismo
10.
J Hazard Mater ; 459: 132249, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37567139

RESUMEN

Membrane fouling, primarily resulting from natural organic matter (NOM) widely existing in water sources, has always been a chief hindrance for the prevalent application of ultrafiltration (UF). Thus, vacuum ultraviolet (VUV)/chlorine process was proposed as a strategy for UF membrane fouling control and ultraviolet (UV)/chlorine process was used for comparison. VUV/chlorine process exhibited more excellent performance on NOM removal than UV/chlorine process. [HO•]ss and [Cl•]ss were calculated as 1.26 × 10-13 and 3.06 × 10-14 M, respectively, and ClO• might not exist under the conditions of 0.08 mM chlorine and 30 min VUV irradiation. [HO•]ss, [Cl•]ss and [ClO•]ss were not available and the formation of reactive radicals was unsustainable in UV/chlorine system. Moreover, VUV/chlorine pretreatment also showed better performance on the reversible and irreversible membrane fouling control than UV/chlorine pretreatment. The dominated fouling mechanism in the final stage of filtration was cake filtration. Additionally, the amount of detected disinfection by-products (DBPs) in VUV/chlorine system was significantly lower than that in UV/chlorine system. During subsequent chlorination disinfection, the yield of DBPs with VUV/chorine pretreatment was higher than that with UV/chlorine pretreatment. VUV/chlorine pretreatment could effectively control DBPs formation when the pretreatment time was extended to 120 min. In summary, VUV/chlorine system presented a most excellent performance on membrane fouling control, NOM degradation and DBPs control.

11.
Sci Total Environ ; 903: 166142, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37574061

RESUMEN

Adsorption technology has been widely developed to control environmental pollution, which plays an important role in the sustainable development of modern society. Calcium carbonate (CaCO3) is characterized by its flexible pore design and functional group modification, which meet the high capacity and targeting requirements of adsorption. Therefore, its charm of "small materials for great use" makes it a suitable candidate for adsorption. Firstly, we comprehensively review the research progress of controlled synthesis and surface modification of CaCO3, and its application for adsorbing contaminants from water and air. Then, we systematically examine the structure-effect relationship between CaCO3 adsorbents and contaminants, while also intrinsic mechanism of remarkable capacity and targeted adsorption. Finally, from the perspective of material design and engineering application, we offer insightful discussion on the prospects and challenges of calcium carbonate adsorbents, providing a valuable reference for the further research in this field.

12.
Water Res ; 241: 120161, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37276653

RESUMEN

Microplastics (MPs) and nanoplastics (NPs) are prevalent in sewage and pose a potential threat to nitrogen biotransformation in wastewater treatment systems. However, investigations on how MPs and NPs affect the microbial nitrogen conversion and metabolism of the activated sludge are still scanty. Herein, the responses of microbiomes and functional genes to polystyrene MPs and NPs in activated sludge systems were investigated by metagenomic analysis. Results indicated that 1 mg/L MPs and NPs had marginal impacts on the nitrogen removal performance of the activated sludge systems, whereas high concentrations of MPs and NPs (20 and 100 mg/L) decreased the total nitrogen removal efficiency (13.4%-30.6%) by suppressing the nitrogen transformation processes. Excessive reactive oxygen species induced by MPs and NPs caused cytotoxicity, as evidenced by impaired cytomembranes and decreased bioactivity. Metagenomic analysis revealed that MPs and NPs diminished the abundance of denitrifiers (e.g. Mesorhizobium, Rhodobacter and Thauera), and concurrently reduced the abundance of functional genes (e.g. napA, napB and nirS) encoding for key enzymes involved in the nitrogen transformations, as well as the genes (e.g. mdh) related to the electron donor production, thereby declining the nitrogen removal efficiency. Network analysis further clarified the attenuate association between denitrifiers and denitrification-related genes in the plastic-exposed systems, elucidating that MPs and NPs restrained the nitrogen removal by inhibiting the contributions of microorganisms to nitrogen transformation processes. This study provides vital insights into the responses of the microbial community structure and nitrogen conversion processes to micro(nano)plastics disturbance in activated sludge systems.


Asunto(s)
Microbiota , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Plásticos , Poliestirenos , Eliminación de Residuos Líquidos/métodos , Nitrógeno/metabolismo , Microplásticos , Redes y Vías Metabólicas
13.
Chemosphere ; 338: 139358, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37379980

RESUMEN

Efficient removal of copper complexes is a challenging issue due to their robust stability and solubility. In this study, CoFe2O4-Co0 loaded sludge-derived biochar (MSBC), a magnetic heterogeneous catalyst, was prepared to activate peroxymonosulfate (PMS) for the decomplexation and mineralization of some typical copper complexes (including Cu(Ⅱ)-EDTA, Cu(Ⅱ)-NTA, Cu(Ⅱ)-citrate, and Cu(Ⅱ)-tartrate). The results showed that abundant cobalt ferrite and cobalt nanoparticles were decorated in the plate-like carbonaceous matrix, making it a higher degree of graphitization, better conductivity and more excellent catalytic activity than the raw biochar. Cu(Ⅱ)-EDTA was chosen as the representative copper complex. Under the optimum condition, the decomplexation and mineralization efficiency of Cu(Ⅱ)-EDTA in MSBC/PMS system were 98% and 68% within 20 min, respectively. The mechanistic investigation confirmed that the activation of PMS by MSBC followed both a radical pathway contributed by SO4•- and •OH and a nonradical pathway contributed by 1O2. In addition, the electron transfer pathway between Cu(Ⅱ)-EDTA and PMS facilitated the decomplexation of Cu(Ⅱ)-EDTA. Jointly, CO, Co0, and the redox cycles of Co(Ⅲ)/Co(Ⅱ) and Fe (Ⅲ)/Fe (Ⅱ) were found to play a critical role in the decomplexation process. Overall, the MSBC/PMS system provides a new strategy for efficient decomplexation and mineralization of copper complexes.


Asunto(s)
Cobre , Aguas del Alcantarillado , Ácido Edético , Peróxidos , Fenómenos Magnéticos
14.
Sci Total Environ ; 892: 164440, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37244608

RESUMEN

Cyanobacteria and their metabolites are one of the primary precursors of disinfection by-products (DBPs) in natural water environments. However, few studies have investigated whether the production of DBPs by cyanobacteria changes under complex environmental conditions and possible mechanisms underlying these changes. Therefore, we investigated the effects of algal growth phase, water temperature, pH, illumination and nutrients on the production of trihalomethane formation potential (THMFPs) by Microcystis aeruginosa in four algal metabolic fractions, that is, hydrophilic extracellular organic matter (HPI-EOM), hydrophobic EOM (HPO-EOM), hydrophilic intracellular organic matter (HPI-IOM) and hydrophobic IOM (HPO-IOM). Additionally, correlations between THMFPs and some typical algal metabolite surrogates were analyzed. The results showed that the productivity of THMFPs by M. aeruginosa in EOM could be affected significantly by the algal growth phase and incubation conditions, while the IOM productivity varied insignificantly. M. aeruginosa in the death phase could secrete more EOM and have a higher THMFP productivity than those in the exponential or stationary phases. Cyanobacteria grown under harsh conditions could have increased THMFP productivity in EOM by increasing the reactivity of algal metabolites with chlorine, for example, under low pH conditions, and secreting more metabolites in EOM, for example, under low temperature or nutrient limitation conditions. Polysaccharides were responsible for the enhanced THMFP productivity in HPI-EOM fraction, and a significant linear correlation was found between the concentration of polysaccharides and THMFPs (r = 0.8307). However, THMFPs in HPO-EOM did not correlate with dissolved organic carbon (DOC), ultraviolet absorbance at 254 nm (UV254), specific UV absorbance (SUVA) and cell density. Thus, we could not specify the kind of algal metabolites that contribute to the increased THMFPs in the HPO-EOM fraction under harsh growth conditions. Compared with the case in EOM, the THMFPs in IOM were more stable and correlated with the cell density and total amount of IOM. The results implied that the THMFPs in the EOM were sensitive to growth conditions and were independent of algal density. Considering the fact that traditional water treatment plants cannot remove dissolved organics as efficiently as algal cells, the increased THMFP productivity in EOM by M. aeruginosa under harsh growth conditions could be a potentially serious threat to the safety of the water supply.


Asunto(s)
Cianobacterias , Microcystis , Purificación del Agua , Microcystis/metabolismo , Trihalometanos/metabolismo , Desinfección , Cloro/metabolismo , Purificación del Agua/métodos
15.
J Hazard Mater ; 450: 131028, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36857827

RESUMEN

Perfluorooctanoic acid (PFOA) is a representative persistent organic pollutant and its disposal by mechanochemical (MC) technology emerges in recent years. However, degradation mechanism of PFOA especially rupture of C-F bonds during MC process is still unclear. Therefore, we innovatively employed barium titanate as co-milling reagent in MC system to disclose an electron-dominated reduction process. By stimulating piezoelectric effect of BaTiO3 under MC impact, free electrons were generated. The results implied more than 95.00% degradation and 60.00% defluorination efficiency were obtained after 6 h' ball milling. DPPH• was used as probe to confirm the existence of piezo-excited electrons, which were further verified to be major reactive species by atmosphere experiments. Thus, PFOA destruction was dominated by reduction process, characterizing by breakage of C-F bonds induced by electrons. Accordingly, the fate of organic fluorides was explored and BaF2 was identified as final product. The cleavage of carboxyl group initiated PFOA decomposition, following by successive removal of CF2 groups and elimination of F-. Moreover, the practical experiments and reusable trials implied promising application of this method. Overall, this paper provides a novel perspective for reductive decomposition of PFOA by MC technology and reveals the major role of electrons during reaction process.

16.
Environ Sci Pollut Res Int ; 30(16): 47873-47881, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36749520

RESUMEN

ß-N-methylamino-L-alanine (BMAA), which has been considered as an environmental factor that caused amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS/PDC) or Alzheimer's disease, could be produced by a variety of genera cyanobacteria. BMAA is widely present in water sources contaminated by cyanobacteria and may threaten human health through drinking water. Although oxidants commonly used in drinking water plants such as chlorine, ozone, hydrogen peroxide, and hydroxyl radicals have been shown to effectively degrade BMAA, there are limited studies on the mechanism of BMAA degradation by different oxidants, especially ozone. This work systematically explored the effectiveness of BMAA ozonation degradation, investigated the effect of the operating parameters on the effectiveness of degradation, and speculated on the pathways of BMAA decomposition. The results showed that BMAA could be quickly eliminated by ozone, and the removal rates of BMAA were nearly 100% in pure water, but the removal rates were reduced in actual water. BMAA was primarily degraded by direct oxidation of ozone molecules in acidic and near-neutral conditions, and indirect oxidation of •OH accounted for the main part under strong alkaline conditions. The pH value had a significant effect on the decomposition of BMAA, and the degradation rate of BMAA was fastest at near-neutral pH value. The degradation rates of TOC were significantly lower than that of BMAA, indicating that by-products were generated during the degradation process. Three by-products ([M-H]+ = 105, 90, and 88) were identified by UPLC-MS/MS, and the degradation pathways of BMAA were proposed. The production of by-products was attributed to the fracture of the C-N bonds. This work is helpful for the in-depth understanding on the mechanism and demonstration of the feasibility of the oxidation of BMAA by the ozone process. HIGHLIGHTS: • The reaction of ozonation BMAA was easy to occur. • The degradation rate was fast under near-neutral conditions. • Direct oxidation under neural conditions was the main pathway for ozone degradation of BMAA. • Three products were detected, and the reaction path was inferred.


Asunto(s)
Aminoácidos Diaminos , Agua Potable , Ozono , Humanos , Neurotoxinas , Cromatografía Liquida , Espectrometría de Masas en Tándem , Toxinas de Cianobacterias , Aminoácidos Diaminos/química , Oxidantes
17.
Sci Total Environ ; 857(Pt 2): 159522, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36270364

RESUMEN

Anthropogenic activities have greatly changed the land use and land cover (LULC) and further influenced the chemical properties and amount of DOM transported into aquatic systems, meanwhile, microbial processing is also critical to DOM molecular composition in freshwaters. However, how they jointly shape DOM's chemical composition and chemodiversity in lakes is poorly understood. Here we examined DOM characteristics for seven inland lakes with three different land cover conditions (forest-dominated, cropland-dominated, and urban-dominated). Results indicated that DOM in cropland-dominated and forest-dominated lakes exhibited more characteristics of terrestrial organic matter, while urban-dominated lakes had more allochthonous organic matter driven by relatively high nutrient input. Human activities extended terrestrial DOM input to lakes and intensified the amount of heteroatomic organic molecules containing nitrogen and sulfur in lakes, with cropland contributing more N-containing compounds and urban contributing more S-containing compounds. Differential bacterial community composition appeared in the three types of land cover lakes, while strong co-occurrence/exclusion patterns between specific microbes and molecular formula groups revealed the key DOM metabolism functions of these bacteria. Matrix correlations based on Mantel tests confirmed that watershed landcover status was a dominating factor for DOM sources and molecular composition in mountainous lakes through direct input of terrestrial organic matter, and microbial processing was not the key factor for DOM molecular formula. Our findings help to assess the influence of human activities and microbial processing in the transfer and transformation of DOM in environmental waters.


Asunto(s)
Materia Orgánica Disuelta , Lagos , Humanos , Lagos/química , Actividades Humanas , Bosques , Nitrógeno
18.
Bioresour Technol ; 367: 128262, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36343776

RESUMEN

In this study, MnCl2-impregnated biomass was oxygen-limited pyrolyzed to produce manganese oxide-loaded biochar (MBC), its adsorption behaviors and influencing factors on tetracycline (TTC), norfloxacin (NOR), and sulfamethoxazole (SMX) were systematically investigated. Three antibiotics exhibited enhanced adsorption behavior on MBC, with maximum adsorption capacity as accurately described by Sips isotherm: TTC (534 mg/g) > NOR (67 mg/g) > SMX (28 mg/g). Hydrogen bonding, n/π-π interactions, electrostatic interaction, surface coordination, and hydrophobic interaction are the major mechanisms for the improved adsorption. Manganese oxide particles on MBC promoted surface coordination and hydrogen bonding. Antibiotic molecules with more hydroxyl oxygen-containing functional groups are more susceptible to migrate to biochar surfaces and to be adhered. Moreover, the quantitative structure-property relationship (QSPR) model was constructed and revealed that hydrogen bonding and π-π interactions were crucial for tetracycline antibiotics selective adsorption. Hence, MBC was a prospective adsorbent with promising applications for antibiotic removal in sewage processing.


Asunto(s)
Antibacterianos , Contaminantes Químicos del Agua , Adsorción , Contaminantes Químicos del Agua/análisis , Carbón Orgánico/química , Sulfametoxazol , Tetraciclina , Oxígeno , Cinética
19.
Environ Sci Technol ; 56(18): 13439-13448, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36069735

RESUMEN

The rapid proliferation of planktonic algae induced by eutrophication and climate warming make algae dissolved organic matter (AOM) an important source of dissolved organic matter (DOM) in surface waters, but the understanding of the link between AOM composition and photo-reactivity/photo-transformation of DOM in aquatic systems is limited. Here, intracellular organic matter (IOM) from Microcystis aeruginosa was extracted and subjected to molecular weight (MW) fractionation. Results indicated that IOM had lower aromaticity and higher photosensitive activity compared to Suwannee River fulvic acid (SRFA). The photosensitive activity of IOM relied on both its molecular weight distribution and fluorescence components. The IOM fraction with the highest MW proteins had the lowest quantum yields of reactive intermediates (ΦRIs), which increased with the decrease of MW, while the fractions with more low-excitation tyrosine-like components had relatively higher ΦRIs. Parallel factor analysis and high-resolution mass spectrometry revealed that light radiation of IOM resulted in the composition transformation from tryptophan-like and tyrosine-like components to humic-like components, forming less aromatic and more saturated recalcitrant dissolved organic carbon. Our findings provide new insights into the photo-reactivity and photo-transformation of algae-derived organic matters and help to predict DOM formation involved in carbon cycling in water environment.


Asunto(s)
Materia Orgánica Disuelta , Triptófano , Carbono , Sustancias Húmicas/análisis , Espectrometría de Masas , Plantas , Espectrometría de Fluorescencia/métodos , Tirosina , Agua
20.
ACS Omega ; 7(37): 33482-33490, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36157751

RESUMEN

Designing economical and nonprecious catalysts with a catalytic performance as good as that of noble metals is of great importance in future renewable bioenergy production. In this study, the metal-organic framework (MOF) was applied as a precursor template to synthesize Co3O4 nanoparticles with a carbon matrix shell (denoted as M-Co3O4). To select the synthesized optimal catalyst, stearic acid was chosen as the model reactant. The effects of catalyst dosage, methanol dosage, water dosage, temperature, and reaction time on catalytic efficiency were examined. Under the designed condition, M-Co3O4 exhibited high catalytic performance and the catalyst showed higher conversion of stearic acid (98.7%) and selectivity toward C8-C18 alkanes (92.2%) in comparison with Pt/C (95.8% conversion and 93.2% selectivity toward C8-C18). Furthermore, a series of characterization techniques such as scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption isotherms (Brunauer-Emmett-Teller (BET) method), and thermogravimetric analysis (TGA) was applied to investigate the physicochemical properties of the catalysts. Finally, we proposed that decarbonization (deCO) could be the presumably mechanistic pathway for the production of C8-C18 alkanes from the decomposition of stearic acid.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA