Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
JCI Insight ; 8(20)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37733446

RESUMEN

Abnormal macrophage polarization is generally present in autoimmune diseases. Overwhelming M1 macrophage activation promotes the continuous progression of inflammation, which is one of the reasons for the development of autoimmune diseases. However, the underlying mechanism is still unclear. Here we explore the function of Regulatory factor X1 (RFX1) in macrophage polarization by constructing colitis and lupus-like mouse models. Both in vivo and in vitro experiments confirmed that RFX1 can promote M1 and inhibit M2 macrophage polarization. Furthermore, we found that RFX1 promoted DNA demethylation of macrophage polarization-related genes by increasing APOBEC3A/Apobec3 expression. We identified a potential RFX1 inhibitor, adenosine diphosphate (ADP), providing a potential strategy for treating autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes , Activación de Macrófagos , Animales , Ratones , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/metabolismo , Desmetilación del ADN , Inflamación/metabolismo , Macrófagos/metabolismo , Factor Regulador X1/metabolismo
2.
NPJ Sci Food ; 7(1): 14, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37055440

RESUMEN

Osteoporosis is characterized by decreased bone mass, microarchitectural deterioration, and increased bone fragility. High-fat diet (HFD)-induced obesity also results in bone loss, which is associated with an imbalanced gut microbiome. However, whether HFD-induced obesity or HFD itself promotes osteoclastogenesis and consequent bone loss remains unclear. In this study, we developed HFD-induced obesity (HIO) and non-obesity (NO) mouse models to evaluate the effect of HFD on bone loss. NO mice were defined as body weight within 5% of higher or lower than that of chow diet fed mice after 10 weeks HFD feeding. NO was protected from HIO-induced bone loss by the RANKL /OPG system, with associated increases in the tibia tenacity, cortical bone mean density, bone volume of cancellous bone, and trabecular number. This led to increased bone strength and improved bone microstructure via the microbiome-short-chain fatty acids (SCFAs) regulation. Additionally, endogenous gut-SCFAs produced by the NO mice activated free fatty acid receptor 2 and inhibited histone deacetylases, resulting in the promotion of Treg cell proliferation in the HFD-fed NO mice; thereby, inhibiting osteoclastogenesis, which can be transplanted by fecal microbiome. Furthermore, T cells from NO mice retain differentiation of osteoclast precursors of RAW 264.7 macrophages ex vivo. Our data reveal that HFD is not a deleterious diet; however, the induction of obesity serves as a key trigger of bone loss that can be blocked by a NO mouse-specific gut microbiome.

3.
Comput Biol Med ; 154: 106577, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36753978

RESUMEN

Cells are the basic units of biological organization, and the quantitative analysis of cellular states is an important topic in medicine and is valuable in revealing the complex mechanisms of microscopic world organisms. In order to better understand cell cycle changes as well as drug actions, we need to track cell migration and division. In this paper, we propose a novel engineering model for tracking cells using cell position and motion fields (CPMF). The training sample does not need to be manually annotated, and we modify and edit it against the ground truth using auxiliary tools. The core idea of the project is to combine detection and correlation, and the cell sequence samples are trained by a U-Net network model composed of 3D CNNs, which can track the migration, division, and entry and exit of cells in the field of view with high accuracy in all directions. The average detection accuracy of the cell coordinates is 98.38% and the average tracking accuracy is 98.70%.


Asunto(s)
Modelos Biológicos , Redes Neurales de la Computación , Ciclo Celular , División Celular , Movimiento Celular
4.
Clin Immunol ; 241: 109057, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35667550

RESUMEN

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that affects various organs or systems. We performed metabolomic and lipidomic profiles analyses of 133 SLE patients and 30 HCs. Differential metabolites and lipids were integrated, and then the biomarker panel was identified using binary logistic regression. We found that a combination of four metabolites or lipids could distinguish SLE from HC with an AUC of 0.998. Three lipids were combined to differentiate inactive SLE and active SLE. The AUC was 0.767. In addition, we also identified the biomarkers for different organ phenotypes of SLE. The AUCs for diagnosing SLE patients with only kidney involvement, skin involvement, blood system involvement, and multisystem involvement were 0.766, 0.718, 0.951, and 0.909, respectively. Our study succeeded in identifying biomarkers associated with different clinical phenotypes in SLE patients, which could facilitate a more precise diagnosis and assessment of disease progression in SLE.


Asunto(s)
Lipidómica , Lupus Eritematoso Sistémico , Biomarcadores , Humanos , Lípidos , Lupus Eritematoso Sistémico/genética , Metabolómica
5.
Front Pharmacol ; 13: 805508, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35126161

RESUMEN

Background: Sulforaphane, which is found in cruciferous vegetables, has been reported to have anti-inflammatory, antioxidant, and antitumour activities. However, whether sulforaphane has therapeutic effects on inflammatory or autoimmune skin diseases, including psoriasis and systemic lupus erythematosus (SLE), is unclear. Methods: The therapeutic effects of sulforaphane were analyzed in Imiquimod (IMQ)-induced psoriasis-like mice and lupus-prone MRL/lpr mice. In IMQ-induced psoriasis-like mice treated with sulforaphane (55.3 and 110.6 µmol/kg) or vehicle control, the pathological phenotypes were assessed by the psoriasis area and severity index (PASI) score, haematoxylin-eosin staining (H&E) and quantifying of acanthosis and dermal inflammatory cell infiltration. The proportions of T cell subsets in draining lymph nodes (dLNs) and spleens were examined by flow cytometry. In MRL/lpr mice treated with sulforaphane (82.9 µmol/kg) or vehicle control, mortality and proteinuria were observed, and the glomerular pathology was examined by H&E staining. C3 and IgG depositions in kidney sections were examined by immunofluorescence staining. The proportions of plasma cells, follicular helper T (Tfh) cells, neutrophils and dendritic cells in the dLNs and spleens were examined by flow cytometry. Finally, we examined the Malondialdehyde (MDA) concentration by thiobarbituric acid reactive substance assay and the expression of Prdx1, Nqo1, Hmox1, and Gss by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Results: Sulforaphane ameliorated the skin lesions in IMQ-induced psoriasis-like mice and the renal damage in lupus-prone MRL/lpr mice. In IMQ-induced psoriasis-like mice, sulforaphane reduced the proportions of Th1 and Th17 cells and increased the expression of antioxidant gene Prdx1. In lupus-prone MRL/lpr mice, sulforaphane increased the lifespan and the expression of Prdx1, and decreased the proportions of plasma cells, Tfh cells, neutrophils, and dendritic cells in the dLNs and spleens and the concentration of MDA. Conclusion: Sulforaphane has significant therapeutic effects on IMQ-induced psoriasis-like mice and lupus-like MRL/Lpr mice by reducing inflammatory and autoimmune-related cells and oxidative stress. These findings provide new evidence for developing natural products to treat inflammatory and autoimmune diseases.

6.
Int Immunopharmacol ; 106: 108578, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35124415

RESUMEN

BACKGROUND: Inhibiting Tfh cell overexpansion prevents autoimmune responses and disease flares in systemic lupus erythematosus (SLE). miR-21 is highly expressed in SLE CD4+ T cells, but whether inhibiting miR-21 can reduce Tfh cell expansion and alleviate the disease progression of lupus is unclear. AIM OF THE STUDY: To address the role and molecular mechanism of miR-21 in regulating Tfh cell expansion and its therapeutic effect on SLE. METHODS: We treated 12-week-old MRL/lpr mice with Antagomir-21, which specifically inhibited miR-21 in vivo. After 12 weeks of treatment, we examined the proportions of Tfh cells and germinal center (GC) B cells and serum levels of autoantibodies and evaluated disease severity by histological scoring and albuminuria. We determined the level of intracellular free iron in CD4+ T cells by PGSK probe and examined the expression of the Fth and Tfrc genes by qPCR. Immunohistochemistry (IHC)was used to assess the 5-hmC level in the draining lymph nodes (dLNs) and spleen. RESULTS AND CONCLUSIONS: Inhibiting miR-21 significantly reduced the expansion of Tfh cells and GC B cells. Furthermore, Antagomir-21 highly improved skin lesions and nephritis in MRL/lpr mice. Inhibiting miR-21 reduced intracellular iron accumulation and DNA hydroxymethylation in T cells. In conclusion, inhibiting miR-21 in vivo improves intracellular iron homeostasis and inhibits Tfh cell overexpansion, contributing to reduced autoimmune responses and the remission of disease symptoms in murine lupus.


Asunto(s)
Antagomirs , Lupus Eritematoso Sistémico , MicroARNs , Células T Auxiliares Foliculares , Animales , Antagomirs/farmacología , Modelos Animales de Enfermedad , Lupus Eritematoso Sistémico/tratamiento farmacológico , Ratones , Ratones Endogámicos MRL lpr , MicroARNs/antagonistas & inhibidores , Fenotipo , Células T Auxiliares Foliculares/efectos de los fármacos , Células T Auxiliares Foliculares/inmunología
7.
Biosci Rep ; 41(4)2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33739370

RESUMEN

BACKGROUND: Coronary artery disease (CAD) is a chronic inflammatory disease caused by development of atherosclerosis (AS), which is the leading cause of mortality and disability. Our study aimed to identify the differentially expressed genes (DEGs) in CD14+ monocytes from CAD patients compared with those from non-CAD controls, which might pave the way to diagnosis and treatment for CAD. METHODS: The RNA-sequencing (RNA-seq) was performed by BGISEQ-500, followed by analyzing with R package to screening DEGs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed by R package. In addition, we validated the results of RNA-seq using real-time quantitative polymerase chain reaction (RT-qPCR). Furthermore, we explored the function of selected ten genes in LDL-treated CD14+ monocytes by RT-qPCR. RESULTS: a total of 2897 DEGs were identified, including 753 up- and 2144 down-regulated genes in CD14+ monocytes from CAD patients. These DEGs were mainly enriched in plasma membrane and cell periphery of cell component, immune system process of biological process, NF-κB signaling pathway, cell adhesion molecules signaling pathway and cytokine-cytokine receptor interaction signaling pathway. In LDL-treated CD14+ monocytes, the mRNA expression of pyruvate dehydrogenase kinase 4 (PDK4) was significantly up-regulated. CONCLUSION: In the present study, we suggested that PDK4 might play a role in progression of CAD. The study will provide some pieces of evidence to investigate the role and mechanism of key genes in the pathogenesis of CAD.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Enfermedad de la Arteria Coronaria/metabolismo , Enfermedad de la Arteria Coronaria/patología , Femenino , Humanos , Receptores de Lipopolisacáridos/genética , Receptores de Lipopolisacáridos/metabolismo , Masculino , Persona de Mediana Edad , Monocitos/metabolismo , FN-kappa B/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/genética , Transcriptoma , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA