Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Cureus ; 15(1): e33710, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36793844

RESUMEN

Schwannomas are tumors of neoplastic Schwann cells generally found in peripheral nerves in the head, neck, and extremities. They do not demonstrate hormonal abnormalities, and initial symptoms are typically secondary to adjacent organ compression. These tumors are rarely found in the retroperitoneum. We present a rare finding of an adrenal schwannoma in a 75-year-old female who presented to the emergency department with right flank pain. Imaging incidentally demonstrated a 4.8 cm left adrenal mass. Ultimately, she underwent a left robotic adrenalectomy, and immunohistochemical testing confirmed the presence of an adrenal schwannoma. It is imperative to undergo adrenalectomy and immunohistochemical testing to confirm the diagnosis and rule out malignancy.

2.
Front Endocrinol (Lausanne) ; 14: 1269672, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38205198

RESUMEN

Background: The suprachiasmatic nucleus (SCN) within the hypothalamus is a key brain structure required to relay light information to the body and synchronize cell and tissue level rhythms and hormone release. Specific subpopulations of SCN neurons, defined by their peptide expression, regulate defined SCN output. Here we focus on the vasoactive intestinal peptide (VIP) expressing neurons of the SCN. SCN VIP neurons are known to regulate circadian rhythms and reproductive function. Methods: To specifically study SCN VIP neurons, we generated a novel knock out mouse line by conditionally deleting the SCN enriched transcription factor, Ventral Anterior Homeobox 1 (Vax1), in VIP neurons (Vax1Vip; Vax1fl/fl:VipCre). Results: We found that Vax1Vip females presented with lengthened estrous cycles, reduced circulating estrogen, and increased depressive-like behavior. Further, Vax1Vip males and females presented with a shortened circadian period in locomotor activity and ex vivo SCN circadian period. On a molecular level, the shortening of the SCN period was driven, at least partially, by a direct regulatory role of VAX1 on the circadian clock genes Bmal1 and Per2. Interestingly, Vax1Vip females presented with increased expression of arginine vasopressin (Avp) in the paraventricular nucleus, which resulted in increased circulating corticosterone. SCN VIP and AVP neurons regulate the reproductive gonadotropin-releasing hormone (GnRH) and kisspeptin neurons. To determine how the reproductive neuroendocrine network was impacted in Vax1Vip mice, we assessed GnRH sensitivity to a kisspeptin challenge in vivo. We found that GnRH neurons in Vax1Vip females, but not males, had an increased sensitivity to kisspeptin, leading to increased luteinizing hormone release. Interestingly, Vax1Vip males showed a small, but significant increase in total sperm and a modest delay in pubertal onset. Both male and female Vax1Vip mice were fertile and generated litters comparable in size and frequency to controls. Conclusion: Together, these data identify VAX1 in SCN VIP neurons as a neurological overlap between circadian timekeeping, female reproduction, and depressive-like symptoms in mice, and provide novel insight into the role of SCN VIP neurons.


Asunto(s)
Neuropéptidos , Factores de Transcripción , Masculino , Femenino , Animales , Ratones , Péptido Intestinal Vasoactivo , Kisspeptinas/genética , Semen , Núcleo Supraquiasmático , Reproducción , Neuronas , Ritmo Circadiano , Hormona Liberadora de Gonadotropina , Proteínas de Homeodominio
3.
Front Endocrinol (Lausanne) ; 13: 956169, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35992114

RESUMEN

Disruptions to the circadian system alter reproductive capacity, particularly in females. Mice lacking the core circadian clock gene, Bmal1, are infertile and have evidence of neuroendocrine disruption including the absence of the preovulatory luteinizing hormone (LH) surge and enhanced responsiveness to exogenous kisspeptin. Here, we explore the role of Bmal1 in suprachiasmatic nucleus (SCN) neuron populations known to project to the neuroendocrine axis. We generated four mouse lines using Cre/Lox technology to create conditional deletion of Bmal1 in arginine vasopressin (Bmal1fl/fl:Avpcre ), vasoactive intestinal peptide (Bmal1fl/fl:Vipcre ), both (Bmal1fl/fl:Avpcre+Vipcre ), and neuromedin-s (Bmal1fl/fl:Nmscre ) neurons. We demonstrate that the loss of Bmal1 in these populations has substantial effects on home-cage circadian activity and temperature rhythms. Despite this, we found that female mice from these lines demonstrated normal estrus cycles, fecundity, kisspeptin responsiveness, and inducible LH surge. We found no evidence of reproductive disruption in constant darkness. Overall, our results indicate that while conditional Bmal1 knockout in AVP, VIP, or NMS neurons is sufficient to disrupted locomotor activity, this disruption is insufficient to recapitulate the neuroendocrine reproductive effects of the whole-body Bmal1 knockout.


Asunto(s)
Neuronas del Núcleo Supraquiasmático , Péptido Intestinal Vasoactivo , Animales , Arginina Vasopresina/genética , Ritmo Circadiano/fisiología , Femenino , Fertilidad , Kisspeptinas/genética , Hormona Luteinizante , Ratones , Núcleo Supraquiasmático/metabolismo , Neuronas del Núcleo Supraquiasmático/metabolismo
4.
J Endocr Soc ; 5(1): bvaa173, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33324864

RESUMEN

Acute estrogen deficiency in women can occur due to many conditions including hyperprolactinemia, chemotherapy, GnRH agonist treatment, and removal of hormone replacement therapy. Ovariectomized (OVX) rodent models, often combined with a high-fat diet (HFD), have been used to investigate the effects of decreased estrogen production on metabolism. Since evidence suggests that gut microbes may facilitate the protective effect of estrogen on metabolic dysregulation in an OVX + HFD model, we investigated whether the gut microbiome plays a role in the diet-independent weight gain that occurs after OVX in adult female mice. 16S rRNA gene sequence analysis demonstrated that OVX was not associated with changes in overall gut bacterial biodiversity but was correlated with a shift in beta diversity. Using differential abundance analysis, we observed a difference in the relative abundance of a few bacterial taxa, such as Turicibacter, 3 to 5 weeks after OVX, which was subsequent to the weight gain that occurred 2 weeks postsurgery. A cohousing study was performed to determine whether exposure to a healthy gut microbiome was protective against the development of the metabolic phenotype associated with OVX. Unlike mouse models of obesity, HFD maternal-induced metabolic dysregulation, or polycystic ovary syndrome, cohousing OVX mice with healthy mice did not improve the metabolic phenotype of OVX mice. Altogether, these results indicate that changes in the gut microbiome are unlikely to play a causal role in diet-independent, OVX-induced weight gain (since they occurred after the weight gain) and cohousing with healthy mice did not have a protective effect.

5.
J Endocr Soc ; 3(4): 716-733, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30906911

RESUMEN

In rodents, the preovulatory LH surge is temporally gated, but the timing cue is unknown. Estrogen primes neurons in the anteroventral periventricular nucleus (AVPV) to secrete kisspeptin, which potently activates GnRH neurons to release GnRH, eliciting a surge of LH to induce ovulation. Deletion of the circadian clock gene Bmal1 results in infertility. Previous studies have found that Bmal1 knockout (KO) females do not display an LH surge at any time of day. We sought to determine whether neuroendocrine disruption contributes to the absence of the LH surge. Because Kiss1 expression in the AVPV is critical for regulating ovulation, we hypothesized that this population is disrupted in Bmal1 KO females. However, we found an appropriate rise in AVPV Kiss1 and Fos mRNA at the time of lights out in ovariectomized estrogen-treated animals, despite the absence of a measureable increase in LH. Furthermore, Bmal1 KO females have significantly increased LH response to kiss-10 administration, although the LH response to GnRH was unchanged. We then created Kiss1- and GnRH-specific Bmal1 KO mice to examine whether Bmal1 expression is necessary within either kisspeptin or GnRH neurons. We detected no significant differences in any measured reproductive parameter. Our results indicate that disruption of the hypothalamic regulation of fertility in the Bmal1 KO females is not dependent on endogenous clocks within either the GnRH or kisspeptin neurons.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA