Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
ArXiv ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38659640

RESUMEN

Noninvasive transcranial photoacoustic computed tomography (PACT) of the human brain, despite its clinical potential, remains impeded by the acoustic distortion induced by the human skull. The distortion, which is attributed to the markedly different material properties of the skull relative to soft tissue, results in heavily aberrated PACT images -- a problem that has remained unsolved in the past two decades. Herein, we report the first successful experimental demonstration of the de-aberration of PACT images through an ex-vivo adult human skull using a homogeneous elastic model for the skull. Using only the geometry, position, and orientation of the skull, we accurately de-aberrate the PACT images of light-absorbing phantoms acquired through an ex-vivo human skull, in terms of the recovered phantom features, for different levels of phantom complexity and positions. Our work addresses the longstanding challenge of skull-induced aberrations in transcranial PACT and advances the field towards unlocking the full potential of transcranial human brain PACT.

2.
ArXiv ; 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37426449

RESUMEN

Photoacoustic computed tomography (PACT) is emerging as a new technique for functional brain imaging, primarily due to its capabilities in label-free hemodynamic imaging. Despite its potential, the transcranial application of PACT has encountered hurdles, such as acoustic attenuations and distortions by the skull and limited light penetration through the skull. To overcome these challenges, we have engineered a PACT system that features a densely packed hemispherical ultrasonic transducer array with 3072 channels, operating at a central frequency of 1 MHz. This system allows for single-shot 3D imaging at a rate equal to the laser repetition rate, such as 20 Hz. We have achieved a single-shot light penetration depth of approximately 9 cm in chicken breast tissue utilizing a 750 nm laser (withstanding 3295-fold light attenuation and still retaining an SNR of 74) and successfully performed transcranial imaging through an ex vivo human skull using a 1064 nm laser. Moreover, we have proven the capacity of our system to perform single-shot 3D PACT imaging in both tissue phantoms and human subjects. These results suggest that our PACT system is poised to unlock potential for real-time, in vivo transcranial functional imaging in humans.

3.
J Biomed Opt ; 27(7)2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35778781

RESUMEN

SIGNIFICANCE: Photoacoustic computed tomography (PACT) is a fast-growing imaging modality. In PACT, the image quality is degraded due to the unknown distribution of the speed of sound (SoS). Emerging initial pressure (IP) and SoS joint-reconstruction methods promise reduced artifacts in PACT. However, previous joint-reconstruction methods have some deficiencies. A more effective method has promising prospects in preclinical applications. AIM: We propose a multi-segmented feature coupling (MSFC) method for SoS-IP joint reconstruction in PACT. APPROACH: In the proposed method, the ultrasound detectors were divided into multiple sub-arrays with each sub-array and its opposite counterpart considered to be a pair. The delay and sum algorithm was then used to reconstruct two images based on a subarray pair and estimated a direction-specific SoS, based on image correlation and the orientation of the subarrays. Once the data generated by all pairs of subarrays were processed, an image that was optimized in terms of minimal feature splitting in all directions was generated. Further, based on the direction-specific SoS, a model-based method was used to directly reconstruct the SoS distribution. RESULTS: Both phantom and animal experiments demonstrated feasibility and showed promising results compared with conventional methods, with less splitting and blurring and fewer distortions. CONCLUSIONS: The developed MSFC method shows promising results for both IP and SoS reconstruction. The MSFC method will help to optimize the image quality of PACT in clinical applications.


Asunto(s)
Técnicas Fotoacústicas , Animales , Artefactos , Fantasmas de Imagen , Técnicas Fotoacústicas/métodos , Sonido , Tomografía Computarizada por Rayos X/métodos
4.
Photoacoustics ; 26: 100356, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35574185

RESUMEN

Multispectral photoacoustic (PA) imaging faces two major challenges: the spectral coloring effect, which has been studied extensively as an optical inversion problem, and the spectral crosstalk, which is basically a result of non-ideal acoustic inversion. So far, there is no systematic work to analyze the spectral crosstalk because acoustic inversion and spectroscopic measurement are always treated as decoupled. In this work, we theorize and demonstrate through a series of simulations and experiments how imperfect acoustic inversion induces inaccurate PA spectrum measurement. We provide detailed analysis to elucidate how different factors, including limited bandwidth, limited view, light attenuation, out-of-plane signal, and image reconstruction schemes, conspire to render the measured PA spectrum inaccurate. We found that the model-based reconstruction outperforms universal back-projection in suppressing the spectral crosstalk in some cases.

5.
Photoacoustics ; 21: 100223, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33364162

RESUMEN

For many optical imaging modalities, image qualities are inevitably degraded by wavefront distortions caused by varying light speed. In optical microscopy and astronomy, adaptive optics (AO) has long been applied to compensate for such unwanted aberrations. Photoacoustic computed tomography (PACT), despite relying on the ultrasonic wave for image formation, suffers from the acoustic version of the same problem. However, this problem has traditionally been regarded as an inverse problem of jointly reconstructing both the initial pressure and the sound speed distributions. In this work, we proposed a method similar to indirect wavefront sensing in AO. We argued that wavefront distortions can be extracted and corrected by a frequency domain analysis of local images. In addition to an adaptively reconstructed aberration-free image, the speed of sound map can be subsequently estimated. We demonstrated the method by in silico, phantom, and in vivo experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA