Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros




Base de datos
Asunto principal
Intervalo de año de publicación
1.
Ground Water ; 57(5): 764-771, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30802943

RESUMEN

Managed aquifer recharge is an effective strategy for urban stormwater management. Chemical ions are normally retained in stormwater and groundwater and may accelerate clogging during the recharge process. However, the effect of water chemistry on physical clogging has not previously been investigated. In this study, we investigated the hydrogeochemical mechanism of saturated porous media clogging in a series of column experiments. The column was packed with river sand and added suspensions of kaolinite particles. Calcium chloride and sodium chloride are used as representative ions to study chemical effects. We found that an increase in ionic strength resulted in retention of kaolinite solids in the column, with a breakthrough peak of C/C0 value of 1 to 0.2. The corresponding hydraulic conductivity decreased with increased solids clogging. Divalent cations were also found to have a greater influence on kaolinite particle clogging than monovalent cations. The enhanced hydrochemical-related clogging was caused by kaolinite solids flocculating and increasing the deposition rate coefficient by 1 to 2 times in high ionic strength conditions. Three clogging mechanisms of kaolinite solids are proposed: surface filtration, inner blocking, and attachment. This study further deepens the understanding of the mechanisms of solids clogging during aquifer recharge and demonstrates the significance of ionic strength on recharge clogging risk assessments.


Asunto(s)
Agua Subterránea , Caolín , Porosidad , Ríos , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA