Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 325
Filtrar
1.
Polymers (Basel) ; 16(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38891444

RESUMEN

Plasma-initiated polymerization (PIP) is generally attributed to a radical process due to its inhibiting property. However, its unique polymerization behaviors like long-lived radical and solvent effect do not comply well with the traditional radical mechanism. Herein, the PIP of methyl methacrylate (MMA) was conducted in a high-voltage DC electric field to investigate the charged nature of its radicals. Consequently, the polymerization presented a preferential distribution of polymers at the anode but not the cathode, revealing the negatively charged nature of the growing radicals. An acceleration phenomenon, accompanied by the growth in molecular weights and the reduction in molecular weight distributions (Ð), was observed at the voltages above 16 kV, suggesting the dissociation of ion pairs of growing radicals. The PIP yielded PMMA with analogous chemical and steric structures to those of PMMA from traditional radical initiation, whether in the presence or absence of the external electric field. This work offers new insights into the PIP of vinyl monomers, wherein a one-electron transfer reaction is inferred to be involved in the monomer activation.

2.
Cell Rep ; 43(7): 114391, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38923459

RESUMEN

Inhibition of nucleic acid targets is mediated by Argonaute (Ago) proteins guided by RNA or DNA. Although the mechanisms underpinning the functions of eukaryotic and "long" prokaryotic Ago proteins (pAgos) are well understood, those for short pAgos remain enigmatic. Here, we determine two cryoelectron microscopy structures of short pAgos in association with the NADase-domain-containing protein Sir2-APAZ from Geobacter sulfurreducens (GsSir2/Ago): the guide RNA-target DNA-loaded GsSir2/Ago quaternary complex (2.58 Å) and the dimer of the quaternary complex (2.93Å). These structures show that the nucleic acid binding causes profound conformational changes that result in disorder or partial dissociation of the Sir2 domain, suggesting that it adopts a NADase-active conformation. Subsequently, two RNA-/DNA-loaded GsSir2/Ago complexes form a dimer through their MID domains, further enhancing NADase activity through synergistic effects. The findings provide a structural basis for short-pAgo-mediated defense against invading nucleic acids.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38934039

RESUMEN

Background: The aim of this study is to investigate the specific pathway involved in human leukocyte antigen (HLA) sensitization using single-cell RNA-sequencing analysis and an allo-sensitized mouse model developed with an HLA.A2 transgenic mouse. Methods: For sensitization, wild-type C57BL/6 mouse received two skin grafts from C57BL/6-Tg(HLA-A2.1)1Enge/J mouse (allogeneic mouse, ALLO). For syngeneic control (SYN), skin grafts were transferred from C57BL/6 to C57BL/6. We performed single-cell RNA-sequencing analysis on splenocytes isolated from ALLO and SYN and compared the gene expression between them. Results: We generated 9,190 and 8,890 single-cell transcriptomes from ALLO and SYN, respectively. Five major cell types (B cells, T cells, natural killer cells, macrophages, and neutrophils) and their transcriptome data were annotated according to the representative differentially expressed genes of each cell cluster. The percentage of B cells was higher in ALLO than it was in SYN. Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that the highly expressed genes in the B cells from ALLO were mainly associated with antigen processing and presentation pathways, allograft rejection, and the Th17 cell differentiation pathway. Upregulated genes in the T cells of ALLO were involved in the interleukin (IL)-17 signaling pathway. The ratio of Th17 cluster and Treg cluster was increased in the ALLO. On flow cytometry, the percentage of Th17 (IL-17+/CD4+ T) cells was higher and regulatory T cells (FOXP3+/CD4+ T) was lower in the ALLO compared to those in the SYN. Conclusion: Our results indicate that not only the B cell lineage but also the Th17 cells and their cytokine (IL-17) are involved in the sensitization to HLA.

4.
J Med Chem ; 67(12): 10211-10232, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38871484

RESUMEN

Papain-like protease (PLpro) is a promising therapeutic target for its pivotal role in the life cycle of SARS-CoV-2. A series of 1,2,4-oxadiazole derivatives was designed and synthesized via a ring formation strategy based on SARS-CoV-2 PLpro-GRL0617 complex structure. Systematic structure-activity relationship studies revealed that introducing oxadiazole and aryl carboxylic acid moieties to GRL0617 enhanced the enzymatic inhibition activity, affinity, and deubiquitination capacity toward PLpro. 1,2,4-Oxadiazole compounds 13f and 26r, which had PLpro inhibition activity (IC50 = 1.8 and 1.0 µM) and antiviral activity against SARS-CoV-2 (EC50 = 5.4 and 4.3 µM), exhibited good metabolic stability (t1/2 > 93.2 min) and higher plasma exposure (AUC0-t = 17,380.08 and 24,289.76 ng·h/mL) in mice. Especially, compound 26r with moderate oral bioavailability of 39.1% and potent antiviral activity is worthy of further studies in vivo. Our findings provide a new insight for the discovery of antiviral agents targeting PLpro.


Asunto(s)
Antivirales , Diseño de Fármacos , Oxadiazoles , SARS-CoV-2 , Oxadiazoles/química , Oxadiazoles/farmacología , Oxadiazoles/síntesis química , Oxadiazoles/farmacocinética , Animales , Antivirales/farmacología , Antivirales/síntesis química , Antivirales/química , Antivirales/farmacocinética , Relación Estructura-Actividad , SARS-CoV-2/efectos de los fármacos , Ratones , Humanos , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacología , Ácidos Carboxílicos/síntesis química , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacocinética , Tratamiento Farmacológico de COVID-19 , Proteasas Similares a la Papaína de Coronavirus/antagonistas & inhibidores , Proteasas Similares a la Papaína de Coronavirus/metabolismo
5.
Gels ; 10(6)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38920925

RESUMEN

Given the increasingly severe environmental problems caused by water pollution, the degradation of organic dyes can be effectively achieved through the utilization of photocatalysis. In this work, metal alkoxides and a combination of alcohol/hydrophobic solvents are employed to prepare BaTiO3 aerogels via a liquid-phase and template-free synthetic route. The preparation process of the aerogels solely entails facile agitation and supercritical drying, eliminating the need for additional heat treatment. The binary solvent of ethanol and toluene is identified as the optimal choice, resulting in a significantly enhanced surface area (up to 223 m2/g) and an abundant pore structure of BaTiO3 aerogels compared to that of the BaTiO3 nanoparticles. Thus, the removal efficiency of the BaTiO3 aerogel sample for MO is nearly twice as high as that of the BaTiO3 nanoparticles sample. Noble metal Ag nanoparticles' deposition onto the BaTiO3 aerogel surface is further achieved via the photochemical deposition method, which enhances the capture of photogenerated electrons, thereby ensuring an elevated level of photocatalytic efficiency. As a result, Ag nanoparticles deposited on BaTiO3 aerogel can degrade MO completely after 40 min of illumination, while the corresponding aerogel before modification can only remove 80% of MO after 60 min. The present work not only complements the preparatory investigation of intricate aerogels but also offers a fresh perspective for the development of diverse perovskite aerogels with broad applications.

6.
Gels ; 10(5)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38786208

RESUMEN

Aerogels, as a new type of high-temperature-resistant insulation material, find extensive application in aerospace, high-temperature industrial furnaces, new energy batteries, and various other domains, yet still face some limitations such as inadequate temperature resistance and pronounced brittleness. In this work, SiC/HfC composite aerogels were prepared through a combination of sol-gel method, atmospheric pressure drying technique, and carbothermal reduction reaction. The effects of different molar ratios, calcination time, and temperatures on the microstructural features and physicochemical properties of the resulting SiC/HfC composite aerogels were investigated. The aerogel exhibited an elevated BET-specific surface area of 279.75 m2/g, while the sample displayed an extraordinarily low thermal conductivity of 0.052 W/(m·K). Most notably, the compressive strength reached an outstanding 5.93 MPa after a carbonization temperature of 1500 °C, far exceeding the values reported in prior aerogel studies. This research provided an innovative approach for advancing the development of carbide aerogels in the realm of high-temperature applications.

7.
Nanomaterials (Basel) ; 14(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38786804

RESUMEN

A novel Cr-doped BaTiO3 aerogel was successfully synthesized using a co-gelation technique that involves two metallic alkoxides and a supercritical drying method. This freshly prepared aerogel has a high specific surface area of over 100 m2/g and exhibits improved responsiveness to the simulated sunlight spectrum. Methyl orange (MO) was chosen as the simulated pollutant, and the results reveal that the Cr-doped BaTiO3 aerogel, when modified with the noble metal silver (Ag), achieves a pollutant removal rate approximately 3.2 times higher than that of the commercially available P25, reaching up to 92% within 60 min. The excellent photocatalytic performance of the Ag-modified Cr-doped BaTiO3 aerogel can be primarily attributed to its extensive specific surface area and three-dimensional porous architecture. Furthermore, the incorporation of Ag nanoparticles effectively suppresses the recombination of photo-generated electrons and holes. Stability and reusability tests have confirmed the reliability of the Ag-modified Cr-doped BaTiO3 aerogel. Therefore, this material emerges as a highly promising candidate for the treatment of textile wastewater.

8.
PLoS Pathog ; 20(5): e1012209, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38709723

RESUMEN

[This corrects the article DOI: 10.1371/journal.ppat.1003231.].

9.
Nat Commun ; 15(1): 4176, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755176

RESUMEN

SETD3 is an essential host factor for the replication of a variety of enteroviruses that specifically interacts with viral protease 2A. However, the interaction between SETD3 and the 2A protease has not been fully characterized. Here, we use X-ray crystallography and cryo-electron microscopy to determine the structures of SETD3 complexed with the 2A protease of EV71 to 3.5 Å and 3.1 Å resolution, respectively. We find that the 2A protease occupies the V-shaped central cleft of SETD3 through two discrete sites. The relative positions of the two proteins vary in the crystal and cryo-EM structures, showing dynamic binding. A biolayer interferometry assay shows that the EV71 2A protease outcompetes actin for SETD3 binding. We identify key 2A residues involved in SETD3 binding and demonstrate that 2A's ability to bind SETD3 correlates with EV71 production in cells. Coimmunoprecipitation experiments in EV71 infected and 2A expressing cells indicate that 2A interferes with the SETD3-actin complex, and the disruption of this complex reduces enterovirus replication. Together, these results reveal the molecular mechanism underlying the interplay between SETD3, actin, and viral 2A during virus replication.


Asunto(s)
Actinas , Microscopía por Crioelectrón , Enterovirus Humano A , Unión Proteica , Humanos , Actinas/metabolismo , Enterovirus Humano A/genética , Enterovirus Humano A/metabolismo , Cristalografía por Rayos X , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/química , Replicación Viral , Proteínas Virales/metabolismo , Proteínas Virales/genética , Proteínas Virales/química , Infecciones por Enterovirus/virología , Infecciones por Enterovirus/metabolismo , Modelos Moleculares , Histona Metiltransferasas
10.
Head Face Med ; 20(1): 31, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745246

RESUMEN

BACKGROUND: In this study, we sought to quantify the influence of vertical control assisted by a temporary anchorage device (TAD) on orthodontic treatment efficacy for skeletal class II patients with a hyperdivergent facial type and probe into the critical factors of profile improvement. METHODS: A total of 36 adult patients with skeletal class II and a hyperdivergent facial type were included in this retrospective case-control study. To exclude the effect of sagittal anchorage reinforcement, the patients were divided into two groups: a maxillary maximum anchorage (MMA) group (N = 17), in which TADs were only used to help with anterior tooth retraction, and the MMA with vertical control (MMA + VC) group (N = 19), for which TADs were also used to intrude the maxillary molars and incisors. The treatment outcome was evaluated using dental, skeletal, and soft-tissue-related parameters via a cephalometric analysis and cast superimposition. RESULTS: A significant decrease in ANB (P < 0.05 for both groups), the retraction and uprighting of the maxillary and mandibular incisors, and the retraction of protruded upper and lower lips were observed in both groups. Moreover, a significant intrusion of the maxillary molars was observed via the cephalometric analysis (- 1.56 ± 1.52 mm, P < 0.05) and cast superimposition (- 2.25 ± 1.03 mm, P < 0.05) of the MMA + VC group but not the MMA group, which resulted in a remarkable decrease in the mandibular plane angle (- 1.82 ± 1.38°, P < 0.05). The Z angle (15.25 ± 5.30°, P < 0.05) and Chin thickness (- 0.97 ± 0.45°, P < 0.05) also improved dramatically in the MMA + VC group, indicating a better profile and a relaxed mentalis. Multivariate regression showed that the improvement in the soft tissue was closely related to the counterclockwise rotation of the mandible plane (P < 0.05). CONCLUSIONS: TAD-assisted vertical control can achieve intrusion of approximately 2 mm for the upper first molars and induce mandibular counterclockwise rotation of approximately 1.8°. Moreover, it is especially important for patients without sufficient retraction of the upper incisors or a satisfactory chin shape.


Asunto(s)
Cefalometría , Maloclusión Clase II de Angle , Humanos , Maloclusión Clase II de Angle/terapia , Maloclusión Clase II de Angle/diagnóstico por imagen , Femenino , Masculino , Estudios Retrospectivos , Adulto , Estudios de Casos y Controles , Adulto Joven , Resultado del Tratamiento , Métodos de Anclaje en Ortodoncia/métodos , Métodos de Anclaje en Ortodoncia/instrumentación , Ortodoncia Correctiva/métodos , Técnicas de Movimiento Dental/métodos , Dimensión Vertical , Adolescente
11.
J Agric Food Chem ; 72(21): 12119-12129, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38761152

RESUMEN

Taurine (Tau) is a semiessential amino acid in mammals with preventive and therapeutic effects on several intestinal disorders. However, the exact function of taurine in ulcerative colitis (UC) is still largely unclear. In this study, we used two taurine-deficient mouse models (CSAD-/- and TauT-/- mice) to explore the influence of taurine on the progression of UC in both dextran sulfate sodium (DSS)-induced colitis and LPS-stimulated Caco-2 cells. We found that cysteine sulfinic acid decarboxylase (CSAD) and taurine transporter (TauT) expressions and taurine levels were markedly reduced in colonic tissues of mice treated with DSS. The CSAD and TauT knockouts exacerbated DSS-induced clinical symptoms and pathological damage and aggravated the intestinal barrier dysfunction and the colonic mucosal inflammatory response. Conversely, taurine pretreatment enhanced the intestinal barrier functions by increasing goblet cells and upregulating tight junction protein expression. Importantly, taurine bound with TLR4 and inhibited the TLR4/NF-κB pathway, ultimately reducing proinflammatory factors (TNF-α and IL-6) and oxidative stress. Our findings highlight the essential role of taurine in maintaining the intestinal barrier integrity and inhibiting intestinal inflammation, indicating that taurine is a promising supplement for colitis treatment.


Asunto(s)
Colitis , Mucosa Intestinal , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B , Transducción de Señal , Taurina , Receptor Toll-Like 4 , Animales , Taurina/farmacología , Taurina/administración & dosificación , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Ratones , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colitis/inducido químicamente , Colitis/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Células CACO-2 , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Sulfato de Dextran/efectos adversos , Carboxiliasas/genética , Carboxiliasas/metabolismo , Funcion de la Barrera Intestinal
12.
ACS Appl Mater Interfaces ; 16(17): 22580-22592, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38634565

RESUMEN

The application of high-performance rubber nanocomposites has attracted wide attention, but its development is limited by the imbalance of interface and network effects caused by fillers. Herein, an ultrastrong polymer nanocomposite is successfully designed by introducing a superhydrophobic and mesoporous silica aerogel (HSA) as the filler to poly(methyl vinyl phenyl) siloxane (PVMQ), which increased the PVMQ elongation at break (∼690.1%) by ∼9.3 times and the strength at break (∼6.6 MPa) by ∼24.3 times. Furthermore, HSA/PVMQ with a high dynamic storage modulus (G'0) of ∼12.2 MPa and high Payne effect (ΔG') of ∼9.4 MPa is simultaneously achieved, which is equivalent to 2-3 times that of commercial fumed silica reinforced PVMQ. The superior performance is attributed to the filler-rubber interfacial interaction and the robust filler-rubber entanglement network which is observed by scanning electron microscopy. When the HSA-PVMQ entanglement network is subjected to external stress, both the HSA and bound-PVMQ chains are synergistically involved in resisting structural evolution, resulting in the maximized energy dissipation and deformation resistance through the desorption of the polymer chain and the slip/interpenetrating of the exchange hydrogen bond pairs. Hence, highly aggregated nanoporous silica aerogels may soon be widely used in the application of reinforced silicone rubber or other polymers shortly.

13.
Front Microbiol ; 15: 1352586, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38596375

RESUMEN

Introduction: Melatonin (MEL) is a crucial neuroendocrine hormone primarily produced by the pineal gland. Pinealectomy (PINX) has been performed on an endogenous MEL deficiency model to investigate the functions of pineal MEL and its relationship with various diseases. However, the effect of PINX on the gastrointestinal tract (GIT) MEL levels and gut microbiome in pigs has not been previously reported. Methods: By using a newly established pig PINX model, we detected the levels of MEL in the GIT by liquid chromatography-tandem mass spectrometry. In addition, we examined the effects of PINX on the expression of MEL synthesis enzymes, intestinal histomorphology, and the intestinal barrier. Furthermore, 16S rRNA sequencing was performed to analyze the colonic microbiome. Results: PINX reduced serum MEL levels but did not affect GIT MEL levels. Conversely, MEL supplementation increased MEL levels in the GIT and intestinal contents. Neither PINX nor MEL supplementation had any effect on weight gain, organ coefficient, serum biochemical indexes, or MEL synthetase arylalkylamine N-acetyltransferase (AANAT) expression in the duodenum, ileum, and colon. Furthermore, no significant differences were observed in the intestinal morphology or intestinal mucosal barrier function due to the treatments. Additionally, 16S rRNA sequencing revealed that PINX had no significant impact on the composition of the intestinal microbiota. Nevertheless, MEL supplementation decreased the abundance of Fibrobacterota and increased the abundance of Actinobacteriota, Desulfobacterota, and Chloroflexi. Conclusion: We demonstrated that synthesis of MEL in the GIT is independent of the pineal gland. PINX had no influence on intestinal MEL level and microbiota composition in pigs, while exogenous MEL alters the structure of the gut microbiota.

14.
BMC Nurs ; 23(1): 221, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561710

RESUMEN

BACKGROUND: The outbreak of Corona Virus Disease (COVID-19) in 2019 has continued until now, posing a huge threat to the public's physical and mental health, resulting in different degrees of mental health problems. As a vulnerable segment of the public, anxiety is one of the most common mental health problems among COVID-19 patients. Excessive anxiety aggravates the physical and psychological symptoms of COVID-19 patients, which is detrimental to their treatment and recovery, increases financial expenditure, affects family relations, and adds to the medical burden. OBJECTIVE: This study aimed to explore the role of psychological capital and self-esteem in the relationship between insomnia and anxiety, thereby shedding light on the mechanism of the effect of insomnia on anxiety in COVID-19 patients. METHODS: A cross-sectional study was conducted from April to May 2022 in Fangcang hospital in Shanghai, China. The self-administered questionnaires were distributed to 718 COVID-19 patients via cell phone using the Internet platform "Questionnaire Star", which included Athens Insomnia Scale, Psychological Capital Questionnaire, Self-esteem Scale, Self-Rating Anxiety Scale, gender, age, marital status, education. Data analysis was performed using descriptive analysis, independent-samples t-test, one-way analysis of variance, Pearson correlation analysis, ordinary least-squares regression, and bootstrap method. RESULTS: Education background had significant impact on anxiety in COVID-19 patients (F = 7.70, P < 0.001). Insomnia, psychological capital, self-esteem and anxiety were significantly correlated, respectively (P < 0.001). And Regression analysis showed that insomnia had a direct negative predictive effect on psychological capital (ß = -0.70, P < 0.001) and self-esteem (ß = -0.13, P < 0.001). Psychological capital had a direct positive predictive effect on self-esteem (ß = 0.12, P < 0.001). Insomnia had a direct positive predictive effect on anxiety (ß = 0.61, P < 0.001). Both psychological capital and self-esteem had significant negative predictive effects on anxiety (ß = -0.06, P < 0.05; ß = -0.72, P < 0.001). The results showed that the mediating effect of psychological capital and self-esteem was significant, and the mediating effect value was 0.21. First, the indirect effect consisting of insomnia - psychological capital - anxiety was 0.04, showing that psychological capital had a significant mediating effect. Second, the indirect effect consisting of insomnia-self-esteem-anxiety had a value of 0.10, indicating that self-esteem had a significant mediating effect. Third, the indirect effect consisting of insomnia-psychological capital-self-esteem-anxiety had a value of 0.06, suggesting that psychological capital and self-esteem had a significant chain mediating effect between insomnia and anxiety. CONCLUSIONS: Insomnia had a significant positive predictive effect on anxiety. Insomnia was first associated with a decrease in psychological capital, followed by a sequential decrease in self-esteem, which in turn was associated with increased anxiety symptoms in COVID-19 patients. Therefore, focusing on improving the psychological capital and self-esteem of patients can help alleviate the anxiety caused by insomnia in COVID-19 patients. It is recommended that patients and health care professionals increase the psychological capital and Self-esteem of COVID-19 patients through various methods to counter the effects of insomnia on anxiety.

15.
Anal Methods ; 16(10): 1489-1495, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38369952

RESUMEN

High fluorescence background poses a substantial challenge to surface-enhanced Raman scattering (SERS), thereby limiting its broader applicability across diverse domains. In this work, silver nanoparticle (Ag NP)-loaded graphene oxide aerogel nanomaterials (GO-Ag ANM) were prepared for sensitive SERS detection of fluorescent explosive 2,4,8,10-tetranitrobenzo-1,3a,6,6a-tetraazapentaenopyridine (BPTAP) by a fluorescence quenching strategy. By harnessing the fluorescence quenching properties of graphene and the localized surface plasmon resonance of silver nanoparticles, the synthesized aerogels exhibited effective fluorescence quenching and Raman enhancement capabilities when employed for BPTAP analysis with 532 nm laser excitation. Significantly, precise control over the loading quantity of silver nanoparticles (Ag NPs) resulted in the remarkable sensitivity of the surface-enhanced Raman scattering (SERS) effect. This method allowed for the detection of fluorescent explosive BPTAP at an extraordinarily low concentration of 1 × 10-7 M. Furthermore, the approach also demonstrated excellent detection capabilities for the dyes R6G, CV, and RhB. This study offers valuable insights for the sensitive detection of fluorescent molecules.

16.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338657

RESUMEN

Sensitization to HLA can result in allograft loss for kidney transplantation (KT) patients. Therefore, it is required to develop an appropriate desensitization (DSZ) technique to remove HLA-donor-specific anti-HLA antibody (DSA) before KT. The aim of this research was to investigate whether combined use of the IL-6 receptor-blocking antibody, tocilizumab (TCZ), and bone-marrow-derived mesenchymal stem cells (BM-MSCs) could attenuate humoral immune responses in an allo-sensitized mouse model developed using HLA.A2 transgenic mice. Wild-type C57BL/6 mice were sensitized with skin allografts from C57BL/6-Tg (HLA-A2.1)1Enge/J mice and treated with TCZ, BM-MSC, or both TCZ and BM-MSC. We compared HLA.A2-specific IgG levels and subsets of T cells and B cells using flow cytometry among groups. HLA.A2-specific IgG level was decreased in all treated groups in comparison with that in the allo-sensitized control (Allo-CONT) group. Its decrease was the most significant in the TCZ + BM-MSC group. Regarding the B cell subset, combined use of TCZ and BM-MSC increased proportions of pre-pro B cells but decreased proportions of mature B cells in BM (p < 0.05 vs. control). In the spleen, an increase in transitional memory was observed with a significant decrease in marginal, follicular, and long-lived plasma B cells (p < 0.05 vs. control) in the TCZ + BM-MSC group. In T cell subsets, Th2 and Th17 cells were significantly decreased, but Treg cells were significantly increased in the TCZ+BM-MSC group compared to those in the Allo-CONT group in the spleen. Regarding RNA levels, IL-10 and Foxp3 showed increased expression, whereas IL-23 and IFN-γ showed decreased expression in the TCZ + BM-MSC group. In conclusion, combined use of TCZ and BM-MSC can inhibit B cell maturation and up-regulate Treg cells, finally resulting in the reduction of HLA.A2-specific IgG in a highly sensitized mouse model. This study suggests that the combined use of TCZ and BM-MSC can be proposed as a novel strategy in a desensitization protocol for highly sensitized patients.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Humanos , Ratones , Animales , Ratones Endogámicos C57BL , Linfocitos B , Ratones Transgénicos , Antígeno HLA-A2/genética , Antígenos HLA/metabolismo , Inmunoglobulina G/metabolismo , Células Madre Mesenquimatosas/metabolismo
17.
Elife ; 122024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38271475

RESUMEN

Spermatogonial stem cells (SSCs) are essential for continuous spermatogenesis and male fertility. The underlying mechanisms of alternative splicing (AS) in mouse SSCs are still largely unclear. We demonstrated that SRSF1 is essential for gene expression and splicing in mouse SSCs. Crosslinking immunoprecipitation and sequencing data revealed that spermatogonia-related genes (e.g. Plzf, Id4, Setdb1, Stra8, Tial1/Tiar, Bcas2, Ddx5, Srsf10, Uhrf1, and Bud31) were bound by SRSF1 in the mouse testes. Specific deletion of Srsf1 in mouse germ cells impairs homing of precursor SSCs leading to male infertility. Whole-mount staining data showed the absence of germ cells in the testes of adult conditional knockout (cKO) mice, which indicates Sertoli cell-only syndrome in cKO mice. The expression of spermatogonia-related genes (e.g. Gfra1, Pou5f1, Plzf, Dnd1, Stra8, and Taf4b) was significantly reduced in the testes of cKO mice. Moreover, multiomics analysis suggests that SRSF1 may affect survival of spermatogonia by directly binding and regulating Tial1/Tiar expression through AS. In addition, immunoprecipitation mass spectrometry and co-immunoprecipitation data showed that SRSF1 interacts with RNA splicing-related proteins (e.g. SART1, RBM15, and SRSF10). Collectively, our data reveal the critical role of SRSF1 in spermatogonia survival, which may provide a framework to elucidate the molecular mechanisms of the posttranscriptional network underlying homing of precursor SSCs.


Asunto(s)
Espermatogonias , Testículo , Animales , Masculino , Ratones , Proteínas de Ciclo Celular/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Represoras/metabolismo , Factores de Empalme de ARN/metabolismo , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Espermatogénesis/genética , Espermatogonias/metabolismo , Células Madre/metabolismo , Testículo/metabolismo
18.
Kidney Res Clin Pract ; 43(2): 236-249, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37448282

RESUMEN

BACKGROUND: Multiple risk factors are involved in new-onset diabetes mellitus (DM) after organ transplantation; however, their ability to predict clinical prognosis remains unclear. Therefore, we investigated whether patient-specific induced pluripotent stem cells (iPSCs) could help predict DM development before performing kidney transplantation (KT). METHODS: We first performed whole transcriptome and functional enrichment analyses of KT patient-derived iPSCs. Our results revealed that insulin resistance, type 2 DM, and transforming growth factor beta signaling pathways are associated between the groups of DM and non-DM. We next determined whether the genetic background was associated with development of iPSCs into pancreatic progenitor (PP) cells. RESULTS: The levels of differentiation-related key markers of PP cells were significantly lower in the DM group than in the non-DM group. Moreover, the results of tacrolimus toxicity screening showed a significant decrease in the number of PP cells of the DM group compared with the non-DM group, suggesting that these cells are more susceptible to tacrolimus toxicity. CONCLUSION: Taken together, these results indicate that PP cells of the DM group showed low developmental potency accompanied by a significantly different genetic background compared with the non-DM group. Thus, genetic analysis can be used to predict the risk of DM before KT.

19.
Nature ; 625(7996): 822-831, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37783228

RESUMEN

Argonaute (Ago) proteins mediate RNA- or DNA-guided inhibition of nucleic acids1,2. Although the mechanisms used by eukaryotic Ago proteins and long prokaryotic Ago proteins (pAgos) are known, that used by short pAgos remains elusive. Here we determined the cryo-electron microscopy structures of a short pAgo and the associated TIR-APAZ proteins (SPARTA) from Crenotalea thermophila (Crt): a free-state Crt-SPARTA; a guide RNA-target DNA-loaded Crt-SPARTA; two Crt-SPARTA dimers with distinct TIR organization; and a Crt-SPARTA tetramer. These structures reveal that Crt-SPARTA is composed of a bilobal-fold Ago lobe that connects with a TIR lobe. Whereas the Crt-Ago contains a MID and a PIWI domain, Crt-TIR-APAZ has a TIR domain, an N-like domain, a linker domain and a trigger domain. The bound RNA-DNA duplex adopts a B-form conformation that is recognized by base-specific contacts. Nucleic acid binding causes conformational changes because the trigger domain acts as a 'roadblock' that prevents the guide RNA 5' ends and the target DNA 3' ends from reaching their canonical pockets; this disorders the MID domain and promotes Crt-SPARTA dimerization. Two RNA-DNA-loaded Crt-SPARTA dimers form a tetramer through their TIR domains. Four Crt-TIR domains assemble into two parallel head-to-tail-organized TIR dimers, indicating an NADase-active conformation, which is supported by our mutagenesis study. Our results reveal the structural basis of short-pAgo-mediated defence against invading nucleic acids, and provide insights for optimizing the detection of SPARTA-based programmable DNA sequences.


Asunto(s)
Proteínas Argonautas , Microscopía por Crioelectrón , NAD+ Nucleosidasa , Ácidos Nucleicos , Proteínas Argonautas/química , Proteínas Argonautas/metabolismo , Proteínas Argonautas/ultraestructura , ADN/química , ADN/genética , ADN/metabolismo , ADN/ultraestructura , Activación Enzimática , NAD+ Nucleosidasa/química , NAD+ Nucleosidasa/genética , NAD+ Nucleosidasa/metabolismo , NAD+ Nucleosidasa/ultraestructura , Conformación de Ácido Nucleico , Ácidos Nucleicos/metabolismo , Conformación Proteica , ARN Guía de Sistemas CRISPR-Cas , Mutagénesis
20.
Reprod Sci ; 31(1): 248-259, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37644378

RESUMEN

Prostaglandin F2α (PGF2α) is a luteolytic hormone that promotes parturition in mammals at the end of pregnancy by reducing progesterone secretion from the corpus luteum (CL). In rodents and primates, PGF2α rapidly converts progesterone to 20α-hydroxyprogesterone (20α-OHP) by promoting 20α-hydroxysteroid dehydrogenase (20α-HSD) expression. However, the specific mechanism of 20α-HSD regulation by PGF2α remains unclear. Casein Kinase 1α (CK1α) is a CK1 family member that regulates a variety of physiological functions, including reproductive development. Here, we investigated the effects of CK1α on pregnancy in female mice. Our experiments showed that CK1α is expressed in mouse CL, and its inhibition enhanced progesterone metabolism, decreased progesterone levels, and affected mouse embryo implantation. Further, CK1α mediated the effect of PGF2α on 20α-HSD in mouse luteal cells in vitro. Our results are the first to show that CK1α affects the 20α-HSD mRNA level by affecting the ERK signalling pathway to regulate the expression of the transcription factor SP1. These findings improve our understanding of PGF2α regulation of 20α-HSD.


Asunto(s)
Dinoprost , Progesterona , Embarazo , Ratones , Femenino , Animales , Progesterona/farmacología , Progesterona/metabolismo , Dinoprost/farmacología , 20-Hidroxiesteroide Deshidrogenasas/genética , 20-Hidroxiesteroide Deshidrogenasas/metabolismo , Cuerpo Lúteo/metabolismo , Parto , Mamíferos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA