Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 53(19): 6867-88, 2010 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-20822181

RESUMEN

A potent class of anticancer, human farnesyltransferase (hFTase) inhibitors has been identified by "piggy-backing" on potent, antimalarial inhibitors of Plasmodium falciparum farnesyltransferase (PfFTase). On the basis of a 4-fold substituted ethylenediamine scaffold, the inhibitors are structurally simple and readily derivatized, facilitating the extensive structure-activity relationship (SAR) study reported herein. Our most potent inhibitor is compound 1f, which exhibited an in vitro hFTase IC(50) value of 25 nM and a whole cell H-Ras processing IC(50) value of 90 nM. Moreover, it is noteworthy that several of our inhibitors proved highly selective for hFTase (up to 333-fold) over the related prenyltransferase enzyme geranylgeranyltransferase-I (GGTase-I). A crystal structure of inhibitor 1a co-crystallized with farnesyl pyrophosphate (FPP) in the active site of rat FTase illustrates that the para-benzonitrile moiety of 1a is stabilized by a π-π stacking interaction with the Y361ß residue, suggesting a structural explanation for the observed importance of this component of our inhibitors.


Asunto(s)
Antineoplásicos/síntesis química , Etilenodiaminas/síntesis química , Farnesiltransferasa/antagonistas & inhibidores , Modelos Moleculares , Compuestos de Anilina/síntesis química , Compuestos de Anilina/química , Compuestos de Anilina/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Dominio Catalítico , Línea Celular , Cristalografía por Rayos X , Diseño de Fármacos , Etilenodiaminas/química , Etilenodiaminas/farmacología , Humanos , Estructura Molecular , Nitrilos/síntesis química , Nitrilos/química , Nitrilos/farmacología , Plasmodium falciparum/enzimología , Unión Proteica , Ratas , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química , Sulfonamidas/farmacología
2.
Curr Opin Chem Biol ; 14(3): 341-6, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20430687

RESUMEN

Many biological processes are regulated by protein-protein interactions (PPIs) and as such their misregulation can cause a multitude of diseases. Often the interactions between large proteins are mediated by small protein secondary structural domains, which project a minimum number of specifically arranged residues into the complementary surface of an interacting protein. Nature has the advantage of time, and over time has optimized those secondary structures, such as alpha-helices, beta-sheets and beta-strands, found at the interfaces of PPIs. Inspired by Nature's extensive optimization, chemists have used these secondary structures as templates in the design of small molecules that may act as structural and functional mimics of large rhenylogically organized protein secondary structures. Herein recent applications of the indane, terphenyl, terphenyl-inspired templates, polycyclic ether and benzodiazepinedione scaffolds, as non-peptidic, small molecule alpha-helix mimetics, to disrupt PPIs are detailed.


Asunto(s)
Materiales Biomiméticos/química , Mapeo de Interacción de Proteínas/métodos , Bibliotecas de Moléculas Pequeñas/química , Benzodiazepinonas/química , Éteres Cíclicos/química , Indanos/química , Compuestos de Terfenilo/química
3.
Chem Biol ; 16(2): 181-92, 2009 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-19246009

RESUMEN

Protein farnesyltransferase (FTase) catalyzes an essential posttranslational lipid modification of more than 60 proteins involved in intracellular signal transduction networks. FTase inhibitors have emerged as a significant target for development of anticancer therapeutics and, more recently, for the treatment of parasitic diseases caused by protozoan pathogens, including malaria (Plasmodium falciparum). We present the X-ray crystallographic structures of complexes of mammalian FTase with five inhibitors based on an ethylenediamine scaffold, two of which exhibit over 1000-fold selective inhibition of P. falciparum FTase. These structures reveal the dominant determinants in both the inhibitor and enzyme that control binding and selectivity. Comparison to a homology model constructed for the P. falciparum FTase suggests opportunities for further improving selectivity of a new generation of antimalarial inhibitors.


Asunto(s)
Antimaláricos/química , Antineoplásicos/química , Inhibidores Enzimáticos/química , Farnesiltransferasa/antagonistas & inhibidores , Farnesiltransferasa/química , Animales , Antimaláricos/metabolismo , Antineoplásicos/metabolismo , Línea Celular Tumoral , Cristalografía por Rayos X , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/metabolismo , Etilenodiaminas/química , Farnesiltransferasa/metabolismo , Humanos , Plasmodium falciparum/enzimología , Unión Proteica , Conformación Proteica , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Ratas , Homología Estructural de Proteína , Relación Estructura-Actividad , Especificidad por Sustrato
4.
Org Lett ; 11(1): 25-8, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19035840

RESUMEN

The development of small molecules that disrupt protein-protein interactions is a key goal in addressing a number of disease states. The alpha-helix is commonly found at protein interaction interfaces and has been the focus of substantial small molecule mimetic efforts. One of the primary drawbacks of many small molecule alpha-helix mimetics is their hydrophobic core structures. To address this problem we have developed a novel scaffold based on a more water soluble 5-6-5 imidazole-phenyl-thiazole core. An inhibitor of this class has been shown to disrupt the Cdc42/Dbs protein-protein interaction at micromolar concentrations and may be useful in overcoming Cdc42-induced tumor resistance to anticancer therapies.


Asunto(s)
Materiales Biomiméticos/síntesis química , Materiales Biomiméticos/farmacología , Imidazoles/síntesis química , Imidazoles/farmacología , Tiazoles/síntesis química , Tiazoles/farmacología , Proteína de Unión al GTP cdc42/antagonistas & inhibidores , Materiales Biomiméticos/química , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Imidazoles/química , Modelos Moleculares , Imitación Molecular , Estructura Molecular , Unión Proteica/efectos de los fármacos , Estructura Secundaria de Proteína , Relación Estructura-Actividad , Tiazoles/química , Proteína de Unión al GTP cdc42/síntesis química
5.
J Med Chem ; 51(17): 5176-97, 2008 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-18686940

RESUMEN

New chemotherapeutics are urgently needed to combat malaria. We previously reported on a novel series of antimalarial, ethylenediamine-based inhibitors of protein farnesyltransferase (PFT). In the current study, we designed and synthesized a series of second generation inhibitors, wherein the core ethylenediamine scaffold was varied in order to examine both the homology model of Plasmodium falciparum PFT (PfPFT) and our predicted inhibitor binding mode. We identified several PfPFT inhibitors (PfPFTIs) that are selective for PfPFT versus the mammalian isoform of the enzyme (up to 136-fold selectivity), that inhibit the malarial enzyme with IC50 values down to 1 nM, and that block the growth of P. falciparum in infected whole cells (erythrocytes) with ED50 values down to 55 nM. The structure-activity data for these second generation, ethylenediamine-inspired PFT inhibitors were rationalized by consideration of the X-ray crystal structure of mammalian PFT and the homology model of the malarial enzyme.


Asunto(s)
Antimaláricos/química , Etilenodiaminas/química , Farnesiltransferasa/antagonistas & inhibidores , Plasmodium/efectos de los fármacos , Animales , Antimaláricos/farmacología , Diseño de Fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Etilenodiaminas/farmacología , Humanos , Concentración 50 Inhibidora , Plasmodium/crecimiento & desarrollo , Relación Estructura-Actividad
6.
J Med Chem ; 49(19): 5710-27, 2006 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-16970397

RESUMEN

Third world nations require immediate access to inexpensive therapeutics to counter the high mortality inflicted by malaria. Here, we report a new class of antimalarial protein farnesyltransferase (PFT) inhibitors, designed with specific emphasis on simple molecular architecture, to facilitate easy access to therapies based on this recently validated antimalarial target. This novel series of compounds represents the first Plasmodium falciparum selective PFT inhibitors reported (up to 145-fold selectivity), with lead inhibitors displaying excellent in vitro activity (IC(50) < 1 nM) and toxicity to cultured parasites at low concentrations (ED(50) < 100 nM). Initial studies of absorption, metabolism, and oral bioavailability are reported.


Asunto(s)
Compuestos de Anilina/síntesis química , Antimaláricos/síntesis química , Farnesiltransferasa/antagonistas & inhibidores , Imidazoles/síntesis química , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Administración Oral , Compuestos de Anilina/química , Compuestos de Anilina/farmacología , Animales , Antimaláricos/química , Antimaláricos/farmacología , Sitios de Unión , Disponibilidad Biológica , Células CACO-2 , Permeabilidad de la Membrana Celular , Humanos , Imidazoles/química , Imidazoles/farmacología , Técnicas In Vitro , Masculino , Ratones , Microsomas Hepáticos/metabolismo , Modelos Moleculares , Nitrilos/síntesis química , Nitrilos/química , Nitrilos/farmacología , Ratas , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química , Sulfonamidas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA