Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
bioRxiv ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38979300

RESUMEN

The ability of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) to infect a wide-range of species raises significant concerns regarding both human-to-animal and animal-to-human transmission. There is an increasing demand for highly sensitive, rapid, and simple diagnostic assays that can detect viral infection across various species. In this study, we developed a biosensor assay that adapted a monoclonal-antibody (mAb)-based blocking ELISA format into an Activate Capture + Digital Counting (AC + DC)-based immunoassay. The assay employs a photonic crystal (PC) biosensor, gold-nanoparticle (AuNP) tags, SARS-CoV-2 nucleocapsid (N) protein, and specific anti-N mAb to detect antibody responses in animals exposed with SARS-CoV-2. We demonstrated a simple 2-step 15-min test that was capable of detecting as low as 12.5 ng of antibody in controlled standard serum samples. Based on an evaluation of 176 cat serum samples with known antibody status, an optimal percentage of inhibition (PI) cut-off value of 0.588 resulted in a diagnostic sensitivity of 98.3% and a diagnostic specificity of 96.5%. The test is highly repeatable with low variation coefficients of 2.04%, 2.73%, and 4.87% across different runs, within a single run, and on a single chip, respectively. The test was further employed to detect antibody responses in multiple animal species as well as investigate dynamics of antibody response in experimentally infected cats. This test platform provides an important tool for rapid field surveillance of SARS-CoV-2 infection across multiple species.

2.
bioRxiv ; 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37162861

RESUMEN

DNA has shown great biocompatibility, programmable mechanical properties, and structural addressability at the nanometer scale, making it a versatile material for building high precision nanorobotics for biomedical applications. Herein, we present design principle, synthesis, and characterization of a DNA nanorobotic hand, called the "NanoGripper", that contains a palm and four bendable fingers as inspired by human hands, bird claws, and bacteriophages evolved in nature. Each NanoGripper finger has three phalanges connected by two flexible and rotatable joints that are bendable in response to binding to other entities. Functions of the NanoGripper have been enabled and driven by the interactions between moieties attached to the fingers and their binding partners. We showcase that the NanoGripper can be engineered to interact with and capture various objects with different dimensions, including gold nanoparticles, gold NanoUrchins, and SARS-CoV-2 virions. When carrying multiple DNA aptamer nanoswitches programmed to generate fluorescent signal enhanced on a photonic crystal platform, the NanoGripper functions as a sensitive viral biosensor that detects intact SARS-CoV-2 virions in human saliva with a limit of detection of ~ 100 copies/mL, providing RT-PCR equivalent sensitivity. Additionally, we use confocal microscopy to visualize how the NanoGripper-aptamer complex can effectively block viral entry into the host cells, indicating the viral inhibition. In summary, we report the design, synthesis, and characterization of a complex nanomachine that can be readily tailored for specific applications. The study highlights a path toward novel, feasible, and efficient solutions for the diagnosis and therapy of other diseases such as HIV and influenza.

3.
Small ; 19(44): e2207239, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37104850

RESUMEN

Assays utilizing fluorophores are common throughout life science research and diagnostics, although detection limits are generally limited by weak emission intensity, thus requiring many labeled target molecules to combine their output to achieve higher signal-to-noise. We describe how the synergistic coupling of plasmonic and photonic modes can significantly boost the emission from fluorophores. By optimally matching the resonant modes of a plasmonic fluor (PF) nanoparticle and a photonic crystal (PC) with the absorption and emission spectrum of the fluorescent dye, a 52-fold improvement in signal intensity is observed, enabling individual PFs to be observed and digitally counted, where one PF tag represents one detected target molecule. The amplification can be attributed to the strong near-field enhancement due to the cavity-induced activation of the PF, PC band structure-mediated improvement in collection efficiency, and increased rate of spontaneous emission. The applicability of the method by dose-response characterization of a sandwich immunoassay for human interleukin-6, a biomarker used to assist diagnosis of cancer, inflammation, sepsis, and autoimmune disease is demonstrated. A limit of detection of 10 fg mL-1 and 100 fg mL-1 in buffer and human plasma respectively, is achieved, representing a capability nearly three orders of magnitude lower than standard immunoassays.


Asunto(s)
Nanopartículas , Humanos , Fluorescencia
4.
Micromachines (Basel) ; 14(3)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36985075

RESUMEN

Nanoscale fluorescence emitters are efficient for measuring biomolecular interactions, but their utility for applications requiring single-unit observations is constrained by the need for large numerical aperture objectives, fluorescence intermittency, and poor photon collection efficiency resulting from omnidirectional emission. Photonic crystal (PC) structures hold promise to address the aforementioned challenges in fluorescence enhancement. In this review, we provide a broad overview of PCs by explaining their structures, design strategies, fabrication techniques, and sensing principles. Furthermore, we discuss recent applications of PC-enhanced fluorescence-based biosensors incorporated with emerging technologies, including nucleic acids sensing, protein detection, and steroid monitoring. Finally, we discuss current challenges associated with PC-enhanced fluorescence and provide an outlook for fluorescence enhancement with photonic-plasmonics coupling and their promise for point-of-care biosensing as well monitoring analytes of biological and environmental relevance. The review presents the transdisciplinary applications of PCs in the broad arena of fluorescence spectroscopy with broad applications in photo-plasmonics, life science research, materials chemistry, cancer diagnostics, and internet of things.

5.
Biosens Bioelectron ; 228: 115197, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36905862

RESUMEN

Label-free detection and digital counting of nanometer-scaled objects such as nanoparticles, viruses, extracellular vesicles, and protein molecules enable a wide range of applications in cancer diagnostics, pathogen detection, and life science research. Here, we report the design, implementation, and characterization of a compact Photonic Resonator Interferometric Scattering Microscope (PRISM) designed for point-of-use environments and applications. The contrast of interferometric scattering microscopy is amplified through a photonic crystal surface, upon which scattered light from an object combines with illumination from a monochromatic source. The use of a photonic crystal substrate for interferemetric scattering microscopy results in reduced requirements for high-intensity lasers or oil-immersion objectives, thus opening a pathway toward instruments that are more suitable for environments outside the optics laboratory. The instrument incorporates two innovative elements that facilitate operation on a desktop in ordinary laboratory environments by users that do not have optics expertise. First, because scattering microscopes are extremely sensitive to vibration, we incorporated an inexpensive but effective solution of suspending the instrument's main components from a rigid metal framework using elastic bands, resulting in an average of 28.7 dBV reduction in vibration amplitude compared to an office desk. Second, an automated focusing module based on the principle of total internal reflection maintains the stability of image contrast over time and spatial position. In this work, we characterize the system's performance by measuring the contrast from gold nanoparticles with diameters in the 10-40 nm range and by observing various biological analytes, including HIV virus, SARS-CoV-2 virus, exosome, and ferritin protein.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Nanopartículas del Metal , Humanos , Microscopía , Oro/química , Técnicas Biosensibles/métodos , COVID-19/diagnóstico , SARS-CoV-2
6.
Biosens Bioelectron ; 229: 115228, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36963325

RESUMEN

Rapid, sensitive, and inexpensive point-of-care diagnosis is vital to controlling highly infectious diseases, including COVID-19. Here, we report the design and characterization of a compact fluorimeter called a "Virus Pod" (V-Pod) that enables sensitive self-testing of SARS-CoV-2 viral load in saliva. The rechargeable battery-operated device reads the fluorescence generated by Designer DNA Nanostructures (DDN) when they specifically interact with intact SARS-CoV-2 virions. DDNs are net-shaped self-assembling nucleic acid constructs that provide an array of highly specific aptamer-fluorescent quencher duplexes located at precise positions that match the pattern of spike proteins. The room-temperature assay is performed by mixing the test sample with DNA Net sensor in a conventional PCR tube and placing the tube into the V-Pod. Fluorescent signals are generated when multivalent aptamer-spike binding releases fluorescent quenchers, resulting in rapid (5-min) generation of dose-dependent output. The V-Pod instrument performs laser excitation, fluorescence intensity quantitation, and secure transmission of data to an App via Bluetooth™. We show that the V-Pod and DNA Net assay achieves clinically relevant detection limits of 3.92 × 103 viral-genome-copies/mL for pseudo-typed wild-type SARS-CoV-2 and 1.84 × 104, 9.69 × 104, 6.99 × 104 viral-genome-copies/mL for pathogenic Delta, Omicron, and D614G variants, representing sensitivity similar to laboratory-based PCR. The pocket-sized instrument (∼$294), inexpensive reagent-cost/test ($1.26), single-step, rapid sample-to-answer, and quantitative output represent a capability that is compatible with the needs of frequent self-testing in a consumer-friendly format that can link with medical service systems such as healthcare providers, contact tracing, and infectious disease reporting.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Teléfono Inteligente , Técnicas Biosensibles/métodos , ADN , Sensibilidad y Especificidad
7.
Biosensors (Basel) ; 13(2)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36832064

RESUMEN

The ability to self-test for HIV is vital to preventing transmission, particularly when used in concert with HIV biomedical prevention modalities, such as pre-exposure prophylaxis (PrEP). In this paper, we review recent developments in HIV self-testing and self-sampling methods, and the potential future impact of novel materials and methods that emerged through efforts to develop more effective point-of-care (POC) SARS-CoV-2 diagnostics. We address the gaps in existing HIV self-testing technologies, where improvements in test sensitivity, sample-to-answer time, simplicity, and cost are needed to enhance diagnostic accuracy and widespread accessibility. We discuss potential paths toward the next generation of HIV self-testing through sample collection materials, biosensing assay techniques, and miniaturized instrumentation. We discuss the implications for other applications, such as self-monitoring of HIV viral load and other infectious diseases.


Asunto(s)
COVID-19 , Infecciones por VIH , Humanos , Autoevaluación , SARS-CoV-2 , Pruebas en el Punto de Atención
8.
Angew Chem Int Ed Engl ; 62(16): e202217932, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36622783

RESUMEN

Exosomal microRNAs (miRNAs) have considerable potential as pivotal biomarkers to monitor cancer development, dis-ease progression, treatment effects and prognosis. Here, we report an efficient target recycling amplification process (TRAP) for the digital detection of miRNAs using photonic resonator absorption microscopy. We achieve multiplex digital detection with sub-attomolar sensitivity in 20 minutes, robust selectivity for single nucleotide variants, and a broad dynamic range from 1 aM to 1 pM. Compared with traditional qRT-PCR, TRAP showed similar accuracy in profiling exosomal miRNAs derived from cancer cells, but also exhibited at least 31-fold and 61-fold enhancement in the limits of miRNA-375 and miRNA-21 detection, respectively. The TRAP approach is ideal for exosomal or circulating miRNA biomarker quantification, where the miRNAs are present in low concentrations or sample volume, with potentials for frequent, low-cost, and minimally invasive point-of-care testing.


Asunto(s)
Técnicas Biosensibles , Exosomas , MicroARNs , MicroARNs/análisis , Microscopía , Técnicas de Amplificación de Ácido Nucleico , Fotones , Pronóstico , Exosomas/química
9.
J Am Chem Soc ; 145(37): 20214-20228, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35881910

RESUMEN

We present a net-shaped DNA nanostructure (called "DNA Net" herein) design strategy for selective recognition and high-affinity capture of intact SARS-CoV-2 virions through spatial pattern-matching and multivalent interactions between the aptamers (targeting wild-type spike-RBD) positioned on the DNA Net and the trimeric spike glycoproteins displayed on the viral outer surface. Carrying a designer nanoswitch, the DNA Net-aptamers release fluorescence signals upon virus binding that are easily read with a handheld fluorimeter for a rapid (in 10 min), simple (mix-and-read), sensitive (PCR equivalent), room temperature compatible, and inexpensive (∼$1.26/test) COVID-19 test assay. The DNA Net-aptamers also impede authentic wild-type SARS-CoV-2 infection in cell culture with a near 1 × 103-fold enhancement of the monomeric aptamer. Furthermore, our DNA Net design principle and strategy can be customized to tackle other life-threatening and economically influential viruses like influenza and HIV, whose surfaces carry class-I viral envelope glycoproteins like the SARS-CoV-2 spikes in trimeric forms.


Asunto(s)
COVID-19 , Nanoestructuras , Humanos , SARS-CoV-2 , ADN , Unión Proteica
10.
bioRxiv ; 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36561182

RESUMEN

Label-free detection and digital counting of nanometer-scaled objects such as nanoparticles, viruses, extracellular vesicles, and protein molecules enable a wide range of applications in cancer diagnostics, pathogen detection, and life science research. The contrast of interferometric scattering microscopy is amplified through a photonic crystal surface, upon which scattered light from an object combines with illumination from a monochromatic plane wave source. The use of a photonic crystal substrate for interference scattering microscopy results in reduced requirements for high-intensity lasers or oil-immersion objectives, thus opening a pathway toward instruments that are more suitable for environments outside the optics laboratory. Here, we report the design, implementation, and characterization of a compact Photonic Resonator Interferometric Scattering Microscope (PRISM) designed for point-of-use environments and applications. The instrument incorporates two innovative elements that facilitate operation on a desktop in ordinary laboratory environments by users that do not have optics expertise. First, because scattering microscopes are extremely sensitive to vibration, we incorporated an inexpensive but effective solution of suspending the instrument's main components from a rigid metal framework using elastic bands, resulting in an average of 28.7 dBV reduction in vibration amplitude compared to an office desk. Second, an automated focusing module based on the principle of total internal reflection maintains the stability of image contrast over time and spatial position, facilitating automated data collection. In this work, we characterize the system's performance by measuring the contrast from gold nanoparticles with diameters in the 10-40 nm range and by observing various biological analytes, including HIV virus, SARS-CoV-2 virus, exosomes, and ferritin protein.

11.
Nat Commun ; 13(1): 4647, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941132

RESUMEN

While nanoscale quantum emitters are effective tags for measuring biomolecular interactions, their utilities for applications that demand single-unit observations are limited by the requirements for large numerical aperture (NA) objectives, fluorescence intermittency, and poor photon collection efficiency resulted from omnidirectional emission. Here, we report a nearly 3000-fold signal enhancement achieved through multiplicative effects of enhanced excitation, highly directional extraction, quantum efficiency improvement, and blinking suppression through a photonic crystal (PC) surface. The approach achieves single quantum dot (QD) sensitivity with high signal-to-noise ratio, even when using a low-NA lens and an inexpensive optical setup. The blinking suppression capability of the PC improves the QDs on-time from 15% to 85% ameliorating signal intermittency. We developed an assay for cancer-associated miRNA biomarkers with single-molecule resolution, single-base mutation selectivity, and 10-attomolar detection limit. Additionally, we observed differential surface motion trajectories of QDs when their surface attachment stringency is altered by changing a single base in a cancer-specific miRNA sequence.


Asunto(s)
MicroARNs , Puntos Cuánticos , Parpadeo , Óptica y Fotónica , Fotones , Puntos Cuánticos/química
12.
Analyst ; 147(17): 3838-3853, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-35726910

RESUMEN

Rapid, simple, inexpensive, accurate, and sensitive point-of-care (POC) detection of viral pathogens in bodily fluids is a vital component of controlling the spread of infectious diseases. The predominant laboratory-based methods for sample processing and nucleic acid detection face limitations that prevent them from gaining wide adoption for POC applications in low-resource settings and self-testing scenarios. Here, we report the design and characterization of an integrated system for rapid sample-to-answer detection of a viral pathogen in a droplet of whole blood comprised of a 2-stage microfluidic cartridge for sample processing and nucleic acid amplification, and a clip-on detection instrument that interfaces with the image sensor of a smartphone. The cartridge is designed to release viral RNA from Zika virus in whole blood using chemical lysis, followed by mixing with the assay buffer for performing reverse-transcriptase loop-mediated isothermal amplification (RT-LAMP) reactions in six parallel microfluidic compartments. The battery-powered handheld detection instrument uniformly heats the compartments from below, and an array of LEDs illuminates from above, while the generation of fluorescent reporters in the compartments is kinetically monitored by collecting a series of smartphone images. We characterize the assay time and detection limits for detecting Zika RNA and gamma ray-deactivated Zika virus spiked into buffer and whole blood and compare the performance of the same assay when conducted in conventional PCR tubes. Our approach for kinetic monitoring of the fluorescence-generating process in the microfluidic compartments enables spatial analysis of early fluorescent "bloom" events for positive samples, in an approach called "Spatial LAMP" (S-LAMP). We show that S-LAMP image analysis reduces the time required to designate an assay as a positive test, compared to conventional analysis of the average fluorescent intensity of the entire compartment. S-LAMP enables the RT-LAMP process to be as short as 22 minutes, resulting in a total sample-to-answer time in the range of 17-32 minutes to distinguish positive from negative samples, while demonstrating a viral RNA detection as low as 2.70 × 102 copies per µl, and a gamma-irradiated virus of 103 virus particles in a single 12.5 µl droplet blood sample.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Humanos , Microfluídica , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico/métodos , ARN Viral/genética , Sensibilidad y Especificidad , Teléfono Inteligente , Instrumentos Quirúrgicos , Virus Zika/genética , Infección por el Virus Zika/diagnóstico
13.
Sensors (Basel) ; 22(3)2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-35161831

RESUMEN

In recent years, the biosensor research community has made rapid progress in the development of nanostructured materials capable of amplifying the interaction between light and biological matter. A common objective is to concentrate the electromagnetic energy associated with light into nanometer-scale volumes that, in many cases, can extend below the conventional Abbé diffraction limit. Dating back to the first application of surface plasmon resonance (SPR) for label-free detection of biomolecular interactions, resonant optical structures, including waveguides, ring resonators, and photonic crystals, have proven to be effective conduits for a wide range of optical enhancement effects that include enhanced excitation of photon emitters (such as quantum dots, organic dyes, and fluorescent proteins), enhanced extraction from photon emitters, enhanced optical absorption, and enhanced optical scattering (such as from Raman-scatterers and nanoparticles). The application of photonic metamaterials as a means for enhancing contrast in microscopy is a recent technological development. Through their ability to generate surface-localized and resonantly enhanced electromagnetic fields, photonic metamaterials are an effective surface for magnifying absorption, photon emission, and scattering associated with biological materials while an imaging system records spatial and temporal patterns. By replacing the conventional glass microscope slide with a photonic metamaterial, new forms of contrast and enhanced signal-to-noise are obtained for applications that include cancer diagnostics, infectious disease diagnostics, cell membrane imaging, biomolecular interaction analysis, and drug discovery. This paper will review the current state of the art in which photonic metamaterial surfaces are utilized in the context of microscopy.


Asunto(s)
Técnicas Biosensibles , Microscopía , Óptica y Fotónica , Fotones , Resonancia por Plasmón de Superficie
14.
ACS Nano ; 16(2): 2345-2354, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35040633

RESUMEN

Rapid, ultrasensitive, and selective quantification of circulating microRNA (miRNA) biomarkers in body fluids is increasingly deployed in early cancer diagnosis, prognosis, and therapy monitoring. While nanoparticle tags enable detection of nucleic acid or protein biomarkers with digital resolution and subfemtomolar detection limits without enzymatic amplification, the response time of these assays is typically dominated by diffusion-limited transport of the analytes or nanotags to the biosensor surface. Here, we present a magnetic activate capture and digital counting (mAC+DC) approach that utilizes magneto-plasmonic nanoparticles (MPNPs) to accelerate single-molecule sensing, demonstrated by miRNA detection via toehold-mediated strand displacement. Spiky Fe3O4@Au MPNPs with immobilized target-specific probes are "activated" by binding with miRNA targets, followed by magnetically driven transport through the bulk fluid toward nanoparticle capture probes on a photonic crystal (PC). By spectrally matching the localized surface plasmon resonance of the MPNPs to the PC-guided resonance, each captured MPNP locally quenches the PC reflection efficiency, thus enabling captured MPNPs to be individually visualized with high contrast for counting. We demonstrate quantification of the miR-375 cancer biomarker directly from unprocessed human serum with a 1 min response time, a detection limit of 61.9 aM, a broad dynamic range (100 aM to 10 pM), and a single-base mismatch selectivity. The approach is well-suited for minimally invasive biomarker quantification, enabling potential applications in point-of-care testing with short sample-to-answer time.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , MicroARNs , Biomarcadores de Tumor , Oro/química , Humanos , Límite de Detección , Nanopartículas del Metal/química , MicroARNs/genética , Microscopía , Resonancia por Plasmón de Superficie
15.
Talanta ; 241: 123256, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35085990

RESUMEN

Small noncoding RNAs (snRNA) have been emerging as promising diagnostic biomarkers for detecting early stage cancer. Currently existing methods for snRNA detection, including northern blot, reverse transcription-polymerase chain reaction, microarrays and RNA-Seq, are limited to time-consuming, low sensitivity, expensive instrumentation or complex analysis of data. Herein, we present a rapid quantitative analysis of multiple liver cancer-associated exosomal snRNA by a nucleic acid toehold probe-based photonic resonator absorption microscopy (PRAM) assay, with digital resolution and high sensitivity. The assay relies on the use of three toehold probe-encoded gold nanoparticles (AuNPs) and addressable photonic crystal (PC) sensing chips. The presence of target snRNA will initiate toehold-mediated strand displacement reactions that trigger the capture of gold particles onto the PC surface, which is subsequently imaged by PRAM for digital counting of detected snRNA molecules. We achieved highly sensitive and selective detection of three snRNA targets in buffer with a 30 min assay protocol, with detection limits of 4.56 fM, 4.68 fM and 0.69 pM. Having confirmed our assay's performance for detection of snRNA targets spiked into exosomal RNA extracts, we demonstrated its capability for quantitative detection of the same targets from patient blood plasma samples. The approach offers a rapid, simple workflow that operates at room temperature with a single step without enzymatic amplification, while the detection instrument can be implemented as a low-cost portable system for point of care environments.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Técnicas Biosensibles/métodos , ADN/química , Oro/química , Humanos , Límite de Detección , Nanopartículas del Metal/química , Microscopía , ARN
16.
Curr Opin Solid State Mater Sci ; 26(1): 100966, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34840515

RESUMEN

The COVID-19 pandemic revealed fundamental limitations in the current model for infectious disease diagnosis and serology, based upon complex assay workflows, laboratory-based instrumentation, and expensive materials for managing samples and reagents. The lengthy time delays required to obtain test results, the high cost of gold-standard PCR tests, and poor sensitivity of rapid point-of-care tests contributed directly to society's inability to efficiently identify COVID-19-positive individuals for quarantine, which in turn continues to impact return to normal activities throughout the economy. Over the past year, enormous resources have been invested to develop more effective rapid tests and laboratory tests with greater throughput, yet the vast majority of engineering and chemistry approaches are merely incremental improvements to existing methods for nucleic acid amplification, lateral flow test strips, and enzymatic amplification assays for protein-based biomarkers. Meanwhile, widespread commercial availability of new test kits continues to be hampered by the cost and time required to develop single-use disposable microfluidic plastic cartridges manufactured by injection molding. Through development of novel technologies for sensitive, selective, rapid, and robust viral detection and more efficient approaches for scalable manufacturing of microfluidic devices, we can be much better prepared for future management of infectious pathogen outbreaks. Here, we describe how photonic metamaterials, graphene nanomaterials, designer DNA nanostructures, and polymers amenable to scalable additive manufacturing are being applied towards overcoming the fundamental limitations of currently dominant COVID-19 diagnostic approaches. In this paper, we review how several distinct classes of nanomaterials and nanochemistry enable simple assay workflows, high sensitivity, inexpensive instrumentation, point-of-care sample-to-answer virus diagnosis, and rapidly scaled manufacturing.

17.
J Am Chem Soc ; 144(4): 1498-1502, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-34928591

RESUMEN

Several applications in health diagnostics, food, safety, and environmental monitoring require rapid, simple, selective, and quantitatively accurate viral load monitoring. Here, we introduce the first label-free biosensing method that rapidly detects and quantifies intact virus in human saliva with single-virion resolution. Using pseudotype SARS-CoV-2 as a representative target, we immobilize aptamers with the ability to differentiate active from inactive virions on a photonic crystal, where the virions are captured through affinity with the spike protein displayed on the outer surface. Once captured, the intrinsic scattering of the virions is amplified and detected through interferometric imaging. Our approach analyzes the motion trajectory of each captured virion, enabling highly selective recognition against nontarget virions, while providing a limit of detection of 1 × 103 copies/mL at room temperature. The approach offers an alternative to enzymatic amplification assays for point-of-collection diagnostics.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , ADN/química , Ácidos Nucleicos Inmovilizados/química , SARS-CoV-2/aislamiento & purificación , Técnicas Biosensibles/instrumentación , Humanos , Límite de Detección , Microscopía/métodos , Óptica y Fotónica/instrumentación , Óptica y Fotónica/métodos , SARS-CoV-2/química , Saliva/virología , Glicoproteína de la Espiga del Coronavirus/química
18.
Biomed Opt Express ; 12(8): 4637-4650, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34513214

RESUMEN

Rapid, sensitive, and selective detection of nucleic acid biomarkers for health diagnostic applications becomes feasible for point of care scenarios when the detection instrument is inexpensive, simple, and robust. Here, we report the design, implementation, and characterization of a point of care instrument for photonic resonator absorption microscopy (PRAM) that takes advantage of resonant optical coupling between plasmonic gold nanoparticle tags and a photonic crystal (PC) surface. Matching the PC resonant wavelength to the gold nanoparticle's surface plasmon wavelength generates localized and efficient quenching of the PC resonant reflection intensity, resulting in the ability to clearly detect and count individual gold nanoparticles when they are captured on the PC surface. Surface-captured nanoparticles are observed by illuminating the PC at normal incidence with polarized light from a low-intensity red LED, and recording of PC reflected intensity on an inexpensive CMOS image sensor. A contrast limited adaptive histogram equalization (CLAHE) image processing algorithm was applied to derive counts of captured nanoparticles. The instrument is utilized in the context of an activate capture + digital counting (AC + DC) assay for a specific miRNA sequence, using nucleic acid toehold probes applied to gold nano-urchin (AuNU) nanoparticles to achieve 160 aM detection limits in a 30 min. assay.

20.
Nat Commun ; 12(1): 1744, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33741998

RESUMEN

Interferometric scattering microscopy is increasingly employed in biomedical research owing to its extraordinary capability of detecting nano-objects individually through their intrinsic elastic scattering. To significantly improve the signal-to-noise ratio without increasing illumination intensity, we developed photonic resonator interferometric scattering microscopy (PRISM) in which a dielectric photonic crystal (PC) resonator is utilized as the sample substrate. The scattered light is amplified by the PC through resonant near-field enhancement, which then interferes with the <1% transmitted light to create a large intensity contrast. Importantly, the scattered photons assume the wavevectors delineated by PC's photonic band structure, resulting in the ability to utilize a non-immersion objective without significant loss at illumination density as low as 25 W cm-2. An analytical model of the scattering process is discussed, followed by demonstration of virus and protein detection. The results showcase the promise of nanophotonic surfaces in the development of resonance-enhanced interferometric microscopies.


Asunto(s)
Microscopía de Interferencia/instrumentación , Microscopía de Interferencia/métodos , Óptica y Fotónica/instrumentación , Óptica y Fotónica/métodos , Cristalización , Diseño de Equipo , Oro , Procesamiento de Imagen Asistido por Computador , Nanopartículas del Metal , Nanoestructuras , Fotones , Proteínas/aislamiento & purificación , Virión/aislamiento & purificación , Virus/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA