Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Science ; 383(6690): 1499-1504, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38547284

RESUMEN

Methane emissions from solid waste may represent a substantial fraction of the global anthropogenic budget, but few comprehensive studies exist to assess inventory assumptions. We quantified emissions at hundreds of large landfills across 18 states in the United States between 2016 and 2022 using airborne imaging spectrometers. Spanning 20% of open United States landfills, this represents the most systematic measurement-based study of methane point sources of the waste sector. We detected significant point source emissions at a majority (52%) of these sites, many with emissions persisting over multiple revisits (weeks to years). We compared these against independent contemporaneous in situ airborne observations at 15 landfills and established good agreement. Our findings indicate a need for long-term, synoptic-scale monitoring of landfill emissions in the context of climate change mitigation policy.

2.
Nature ; 627(8003): 328-334, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38480966

RESUMEN

As airborne methane surveys of oil and gas systems continue to discover large emissions that are missing from official estimates1-4, the true scope of methane emissions from energy production has yet to be quantified. We integrate approximately one million aerial site measurements into regional emissions inventories for six regions in the USA, comprising 52% of onshore oil and 29% of gas production over 15 aerial campaigns. We construct complete emissions distributions for each, employing empirically grounded simulations to estimate small emissions. Total estimated emissions range from 0.75% (95% confidence interval (CI) 0.65%, 0.84%) of covered natural gas production in a high-productivity, gas-rich region to 9.63% (95% CI 9.04%, 10.39%) in a rapidly expanding, oil-focused region. The six-region weighted average is 2.95% (95% CI 2.79%, 3.14%), or roughly three times the national government inventory estimate5. Only 0.05-1.66% of well sites contribute the majority (50-79%) of well site emissions in 11 out of 15 surveys. Ancillary midstream facilities, including pipelines, contribute 18-57% of estimated regional emissions, similarly concentrated in a small number of point sources. Together, the emissions quantified here represent an annual loss of roughly US$1 billion in commercial gas value and a US$9.3 billion annual social cost6. Repeated, comprehensive, regional remote-sensing surveys offer a path to detect these low-frequency, high-consequence emissions for rapid mitigation, incorporation into official emissions inventories and a clear-eyed assessment of the most effective emission-finding technologies for a given region.

3.
Sci Adv ; 9(46): eadh2391, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37976355

RESUMEN

Carbon dioxide and methane emissions are the two primary anthropogenic climate-forcing agents and an important source of uncertainty in the global carbon budget. Uncertainties are further magnified when emissions occur at fine spatial scales (<1 km), making attribution challenging. We present the first observations from NASA's Earth Surface Mineral Dust Source Investigation (EMIT) imaging spectrometer showing quantification and attribution of fine-scale methane (0.3 to 73 tonnes CH4 hour-1) and carbon dioxide sources (1571 to 3511 tonnes CO2 hour-1) spanning the oil and gas, waste, and energy sectors. For selected countries observed during the first 30 days of EMIT operations, methane emissions varied at a regional scale, with the largest total emissions observed for Turkmenistan (731 ± 148 tonnes CH4 hour-1). These results highlight the contributions of current and planned point source imagers in closing global carbon budgets.

4.
Environ Sci Technol Lett ; 9(11): 969-974, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36398313

RESUMEN

The rapid reduction of methane emissions, especially from oil and gas (O&G) operations, is a critical part of slowing global warming. However, few studies have attempted to specifically characterize emissions from natural gas gathering pipelines, which tend to be more difficult to monitor on the ground than other forms of O&G infrastructure. In this study, we use methane emission measurements collected from four recent aerial campaigns in the Permian Basin, the most prolific O&G basin in the United States, to estimate a methane emission factor for gathering lines. From each campaign, we calculate an emission factor between 2.7 (+1.9/-1.8, 95% confidence interval) and 10.0 (+6.4/-6.2) Mg of CH4 year-1 km-1, 14-52 times higher than the U.S. Environmental Protection Agency's national estimate for gathering lines and 4-13 times higher than the highest estimate derived from a published ground-based survey of gathering lines. Using Monte Carlo techniques, we demonstrate that aerial data collection allows for a greater sample size than ground-based data collection and therefore more comprehensive identification of emission sources that comprise the heavy tail of methane emissions distributions. Our results suggest that pipeline emissions are underestimated in current inventories and highlight the importance of a large sample size when calculating basinwide pipeline emission factors.

5.
Proc Natl Acad Sci U S A ; 119(38): e2202338119, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36099297

RESUMEN

Understanding, prioritizing, and mitigating methane (CH4) emissions requires quantifying CH4 budgets from facility scales to regional scales with the ability to differentiate between source sectors. We deployed a tiered observing system for multiple basins in the United States (San Joaquin Valley, Uinta, Denver-Julesburg, Permian, Marcellus). We quantify strong point source emissions (>10 kg CH4 h-1) using airborne imaging spectrometers, attribute them to sectors, and assess their intermittency with multiple revisits. We compare these point source emissions to total basin CH4 fluxes derived from inversion of Sentinel-5p satellite CH4 observations. Across basins, point sources make up on average 40% of the regional flux. We sampled some basins several times across multiple months and years and find a distinct bimodal structure to emission timescales: the total point source budget is split nearly in half by short-lasting and long-lasting emission events. With the increasing airborne and satellite observing capabilities planned for the near future, tiered observing systems will more fully quantify and attribute CH4 emissions from facility to regional scales, which is needed to effectively and efficiently reduce methane emissions.


Asunto(s)
Contaminantes Atmosféricos , Metano , Contaminantes Atmosféricos/análisis , Metano/análisis , Estados Unidos
6.
Sci Adv ; 7(27)2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34193415

RESUMEN

Industrial emissions play a major role in the global methane budget. The Permian basin is thought to be responsible for almost half of the methane emissions from all U.S. oil- and gas-producing regions, but little is known about individual contributors, a prerequisite for mitigation. We use a new class of satellite measurements acquired during several days in 2019 and 2020 to perform the first regional-scale and high-resolution survey of methane sources in the Permian. We find an unexpectedly large number of extreme point sources (37 plumes with emission rates >500 kg hour-1), which account for a range between 31 and 53% of the estimated emissions in the sampled area. Our analysis reveals that new facilities are major emitters in the area, often due to inefficient flaring operations (20% of detections). These results put current practices into question and are relevant to guide emission reduction efforts.

7.
Environ Sci Technol ; 54(15): 9254-9264, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32633497

RESUMEN

This study derives methane emission rates from 92 airborne observations collected over 23 facilities including 5 refineries, 10 landfills, 4 wastewater treatment plants (POTWs), 2 composting operations, and 2 dairies in the San Francisco Bay Area. Emission rates are measured using an airborne mass-balance technique from a low-flying aircraft. Annual measurement-based sectorwide methane emissions are 19,000 ± 2300 Mg for refineries, 136,700 ± 25,900 Mg for landfills, 11,900 ± 1,500 Mg for POTWs, and 11,100 ± 3,400 Mg for composting. The average of measured emissions for each refinery ranges from 4 to 23 times larger than the corresponding emissions reported to regulatory agencies, while measurement-derived landfill and POTW estimates are approximately twice the current inventory estimates. Significant methane emissions at composting facilities indicate that a California mandate to divert organics from landfills to composting may not be an effective measure for mitigating methane emissions unless best management practices are instituted at composting facilities. Complementary evidence from airborne remote sensing imagery indicates atmospheric venting from refinery hydrogen plants, landfill working surfaces, composting stockpiles, etc., to be among the specific source types responsible for the observed discrepancies. This work highlights the value of multiple measurement approaches to accurately estimate facility-scale methane emissions and perform source attribution at subfacility scales to guide and verify effective mitigation policy and action.


Asunto(s)
Contaminantes Atmosféricos , Metano , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Metano/análisis , San Francisco , Instalaciones de Eliminación de Residuos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA