RESUMEN
The effects of the simultaneous consumption of amphetamine or amphetamine derivatives and alcohol have not yet been adequately clarified, particularly concerning potential condensation products resulting from the endogenous reaction between these substances and their metabolites (e.g., acetaldehyde, a metabolite of ethanol). In this study, we developed an LC-MS/MS method employing liquid-liquid extraction for the qualitative detection of some relevant condensation products belonging to the class of tetrahydroisoquinolines and their derivatives in human blood, brain, and liver samples. This includes the analysis of the substrates amphetamine, methamphetamine, methylenedioxymethamphetamine, methylenedioxyamphetamine, as well as the condensation products 1,3-dimethyl-1,2,3,4-tetrahydroisoquinoline, N-methyl-1,3-dimethyl-1,2,3,4-tetrahydroisoquinoline, 1,3-dimethyl-7,8-methylenedioxy-1,2,3,4-tetrahydroisoquinoline, and N-methyl-1,3-dimethyl-7,8-methylenedioxy-1,2,3,4-tetrahydroisoquinoline. Therefore, the reference standards of the mentioned tetrahydroisoquinolines were synthesized in advance and the method was validated with regard to the question of the qualitative detection of these compounds. The validation parameters included selectivity, specificity, limit of detection, lower limit of quantification, recovery, matrix effects, and stability for blood, brain, and liver samples. Following the analysis of human blood and post-mortem tissue samples, evidence of the condensation product 1,3-dimethyl-1,2,3,4-tetrahydroisoquinoline originating from the interaction between amphetamine and acetaldehyde was identified in two liver samples. On the contrary, no evidence of this or other tetrahydroisoquinolines was found in the remaining tissue and serum samples.
RESUMEN
An efficient metal-free, photoredox-mediated cascade cyclization of aryl 1-haloalk-5-ynyl ketones has been developed. Using catalytic amounts of eosin Y (EY) and EtNMe2 as a reductive quencher, various aryl 1-haloalk-5-ynyl ketones have been transformed into the corresponding cyclization products in up to 98% yield. As a result, synthetic access to differently α-functionalized cyclopenta[b]naphthones and direct construction of cyclopenta[b]naphtholes has been developed.
RESUMEN
The accumulation of amyloidogenic protein aggregates in neurons is a pathogenic hallmark of a large number of neurodegenerative diseases including Alzheimer's disease (AD). Small molecules targeting such structures and promoting their degradation may have therapeutic potential for the treatment of AD. Here, we searched for natural chemical compounds that decrease the abundance of stable, proteotoxic ß-sheet-rich amyloid-ß (Aß) aggregates in cells. We found that the polyphenol (-)-epigallocatechin gallate (EGCG) functions as a potent chemical aggregate degrader in SH-EP cells. We further demonstrate that a novel, fluorescently labeled EGCG derivative (EGC-dihydroxybenzoate (DHB)-Rhodamine) also shows cellular activity. It directly targets intracellular Aß42 aggregates and competes with EGCG for Aß42 aggregate binding in vitro. Mechanistic investigations indicated a lysosomal accumulation of Aß42 aggregates in SH-EP cells and showed that lysosomal cathepsin activity is critical for efficient EGCG-mediated aggregate clearance. In fact, EGCG treatment leads to an increased abundance of active cathepsin B isoforms and increased enzymatic activity in our SH-EP cell model. Our findings suggest that intracellular Aß42 aggregates are cleared through the endo-lysosomal system. We show that EGCG directly targets intracellular Aß42 aggregates and facilitates their lysosomal degradation. Small molecules, which bind to protein aggregates and increase their lysosomal degradation could have therapeutic potential for the treatment of amyloid diseases.
Asunto(s)
Enfermedad de Alzheimer , Catequina , Humanos , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Catequina/farmacología , Catequina/química , Lisosomas/metabolismoRESUMEN
The flavin derivatives 10-methyl-isoalloxazine (MIA) and 6-fluoro-10-methyl-isoalloxazine (6F-MIA) were incorporated in two alternative metal-organic frameworks, (MOFs) MIL-53(Al) and MOF-5. We used a post-synthetic, diffusion-based incorporation into microcrystalline MIL-53 powders with one-dimensional (1D) pores and an in-situ approach during the synthesis of MOF-5 with its 3D channel network. The maximum amount of flavin dye incorporation is 3.9 wt% for MIA@MIL-53(Al) and 1.5 wt% for 6F-MIA@MIL-53(Al), 0.85 wt% for MIA@MOF-5 and 5.2 wt% for 6F-MIA@MOF-5. For the high incorporation yields the probability to have more than one dye molecule in a pore volume is significant. As compared to the flavins in solution, the fluorescence spectrum of these flavin@MOF composites is broadened at the bathocromic side especially for MIA. Time-resolved spectroscopy showed that multi-exponential fluorescence lifetimes were needed to describe the decays. The fluorescence-weighted lifetime of flavin@MOF of 4 ± 1 ns also corresponds to those in solution but is significantly prolonged compared to the solid flavin dyes with less than 1 ns, thereby confirming the concept of "solid solutions" for dye@MOF composites. The fluorescence quantum yield (ΦF) of the flavin@MOF composites is about half of the solution but is significantly higher compared to the solid flavin dyes. Both the fluorescence lifetime and quantum yield of flavin@MOF decrease with the flavin loading in MIL-53 due to the formation of various J-aggregates. Theoretical calculations using plane-wave and QM/MM methods are in good correspondence with the experimental results and explain the electronic structures as well as the photophysical properties of crystalline MIA and the flavin@MOF composites. In the solid flavins, π-stacking interactions of the molecules lead to a charge transfer state with low oscillator strength resulting in aggregation-caused quenching (ACQ) with low lifetimes and quantum yields. In the MOF pores, single flavin molecules represent a major population and the computed MIA@MOF structures do not find π-stacking interactions with the pore walls but only weak van-der-Waals contacts which reasons the enhanced fluorescence lifetime and quantum yield of the flavins in the composites compared to their neat solid state. To analyze the orientation of flavins in MOFs, we measured fluorescence anisotropy images of single flavin@MOF-5 crystals and a static ensemble flavin@MIL53 microcrystals, respectively. Based on image information, anisotropy distributions and overall curve of the time-resolved anisotropy curves combined with theoretical calculations, we can prove that all fluorescent flavins species have a defined and rather homogeneous orientation in the MOF framework. In MIL-53, the transition dipole moments of flavins are orientated along the 1D channel axis, whereas in MOF-5 we resolved an average orientation that is tilted with respect to the cubic crystal lattice. Notably, the more hydrophobic 6F-MIA exhibits a higher degree order than MIA. The flexible MOF MIL-53(Al) was optimized essentially to the experimental large-pore form in the guest-free state with QuantumEspresso (QE) and with MIA molecules in the pores the structure contracted to close to the experimental narrow-pore form which was also confirmed by PXRD. In summary, the incorporation of flavins in MOFs yields solid-state materials with enhanced rigidity, stabilized conformation, defined orientation and reduced aggregations of the flavins, leading to increased fluorescence lifetime and quantum yield as controllable photo-luminescent and photo-physical properties.
RESUMEN
An acridone derivative (N-methyl-difluoro-acridone, NMA-dF) is characterized with respect to its utility as an emitter in organic light emitting diodes (OLEDs). Using steady-state and time-resolved spectroscopy as well as quantum chemistry, its ability to convert singlet and triplet excitons into light was scrutinized. NMA-dF emits in the deep blue range of the visible spectrum. Its fluorescence emission occurs with quantum yields close to 1 and a radiative rate constant of ≈5 × 108 s-1. So, it processes singlet excitons very efficiently. Using 1,4-dichlorobenzene as a sensitizer, it is shown that NMA-dF also converts triplet excitons into light. With the aid of quantum chemistry, this is related to a reverse intersystem crossing starting from a higher triplet state (HIGHrISC).
Asunto(s)
Acridonas/química , Colorantes Fluorescentes/química , Cobre/químicaRESUMEN
(Per)fluorinated substances represent an important compound class with regard to drug design and material chemistry. We found a mild, operationally simple, and inexpensive photocatalytic perfluoroalkenylation reaction giving tetrasubstituted, highly electron-deficient enals straight from aldehydes. This one-step reaction tolerates various functional groups and can be applied to a wide range of substrates giving the products in yields of 52-84%.
Asunto(s)
Aldehídos , EstereoisomerismoRESUMEN
Myocardial infarction (MI) activates the epicardium to form epicardial stromal cells (EpiSC) that reside in the epicardial hypoxic microenvironment. Paracrine factors secreted by EpiSC were shown to modulate the injury response of the post-MI heart and improve cardiac function. We have previously reported that the expression of the angiogenic cytokines vascular endothelial growth factor A (VEGFA) and IL-6 is strongly upregulated in EpiSC by adenosine acting via the A2B receptor (A2B R). Since tissue hypoxia is well known to be a potent stimulus for the generation of extracellular adenosine, the present study explored the crosstalk of A2B R activation and hypoxia-hypoxia-inducible factor 1 alpha (HIF-1α) signaling in cultured EpiSC, isolated from rat hearts 5 days after MI. We found substantial nuclear accumulation of HIF-1α after A2B R activation even in the absence of hypoxia. This normoxic HIF-1α induction was PKC-dependent and involved upregulation of HIF-1α mRNA expression. While the influence of hypoxia on adenosine generation and A2B R signaling was only minor, hypoxia and A2B R activation cumulatively increased VEGFA expression. Normoxic A2B R activation triggered an HIF-1α-associated cell-protective metabolic switch and reduced oxygen consumption. HIF-1α targets and negative regulators PHD2 and PHD3 were only weakly induced by A2B R signaling, which may result in a sustained HIF-1α activity. The A2B R-mediated normoxic HIF-1α induction was also observed in cardiac fibroblasts from healthy mouse hearts, suggesting that this mechanism is also functional in other A2B R-expressing cell types. Altogether, we identified A2B R-mediated HIF-1α induction as novel aspect in the HIF-1α-adenosine crosstalk, which modulates EpiSC activity and can amplify HIF-1α-mediated cardioprotection.
Asunto(s)
Cardiotónicos/metabolismo , Hipoxia de la Célula , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Infarto del Miocardio/prevención & control , Pericardio/metabolismo , Receptor de Adenosina A2B/metabolismo , Células del Estroma/metabolismo , Animales , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Masculino , Infarto del Miocardio/etiología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Pericardio/patología , Ratas , Ratas Wistar , Receptor de Adenosina A2B/genética , Células del Estroma/patologíaRESUMEN
Non-alcoholic fatty liver disease (NAFLD) is a multifactorial disease. Its development and progression depend on genetically predisposed susceptibility of the patient towards several 'hits' that induce fat storage first and later inflammation and fibrosis. Here, we differentiated induced pluripotent stem cells (iPSCs) derived from four distinct donors with varying disease stages into hepatocyte like cells (HLCs) and determined fat storage as well as metabolic adaptations after stimulations with oleic acid. We could recapitulate the complex networks that control lipid and glucose metabolism and we identified distinct gene expression profiles related to the steatosis phenotype of the donor. In an attempt to reverse the steatotic phenotype, cells were treated with the small molecule AdipoRon, a synthetic analogue of adiponectin. Although the responses varied between cells lines, they suggest a general influence of AdipoRon on metabolism, transport, immune system, cell stress and signalling.
Asunto(s)
Adaptación Biológica , Dieta Alta en Grasa , Metabolismo Energético , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Piperidinas/farmacología , Células Madre/metabolismo , Adiponectina/metabolismo , Biomarcadores , Diferenciación Celular , Células Cultivadas , Regulación de la Expresión Génica , Gluconeogénesis , Hepatocitos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Metabolismo de los Lípidos , Enfermedad del Hígado Graso no Alcohólico/patología , Piperidinas/uso terapéutico , Transducción de SeñalRESUMEN
The synthesis of enantiomerically pure B-ring fluorinated catechin derivatives is presented. In a convergent approach the chromane was obtained by reaction of a lithiated fluoro-resorcine with an optically active epoxide. The latter was prepared from 3,4-difluorobenzaldehyde by reaction with vinylmagnesium bromide followed by Sharpless epoxidation. The protocol provides access to both fluorinated catechin as well as epicatechin derivatives.
RESUMEN
In an effort to explain the experimentally observed variation of the photocatalytic activity of t Bu 3 P, n Bu 3 P and (MeO) 3 P in the blue-light regime [Helmecke et al., Org. Lett. 21 (2019) 7823], we have explored the absorption characteristics of several phosphine- and phosphite-IC 4 F 9 adducts by means of relativistic density functional theory and multireference configuration interaction methods. Based on the results of these computational and complementary experimental studies, we offer an explanation for the broad tailing of the absorption of t Bu 3 P-IC 4 F 9 and (MeO) 3 P-IC 4 F 9 into the visible-light region. Larger coordinate displacements of the ground and excited singlet potential energy wells in n Bu 3 P-IC 4 F 9 , in particular with regard to the P-I-C bending angle, reduce the Franck-Condon factors and thus the absorption probability compared to t Bu 3 P-IC 4 F 9 . Spectroscopic and computational evaluation of conformationally flexible and locked phosphites suggests that the reactivity of (MeO) 3 P may be the result of oxygen lone-pair participation and concomitant broadening of absorption. The proposed mechanism for the phosphine-catalyzed homolytic C-I cleavage of perfluorobutane iodide involves S1 â S0 absorption of the adduct followed by intersystem crossing to the photochemically active T 1 state.
Asunto(s)
Yoduros/química , Luz , Fosfinas/química , Procesos Fotoquímicos , Algoritmos , Modelos Teóricos , Conformación Molecular , Teoría Cuántica , Análisis EspectralRESUMEN
Magnetic adsorbates on superconductors induce a Kondo resonance outside and Yu-Shiba-Rusinov (YSR) bound states inside the superconducting energy gap. When probed by scanning tunneling spectroscopy, the associated differential-conductance spectra frequently exhibit characteristic bias-voltage asymmetries. Here, we observe correlated variations of Kondo and YSR asymmetries across an Fe-porphyrin molecule adsorbed on Pb(111). We show that both asymmetries originate in interfering tunneling paths via a spin-carrying orbital and the highest occupied molecular orbital (HOMO). Strong evidence for this model comes from nodal planes of the HOMO, where tunneling reveals symmetric Kondo and YSR resonances. Our results establish an important mechanism for the asymmetries of Kondo and YSR line shapes.
RESUMEN
An efficient metal-free, photomediated iodo perfluoroalkylation under mild conditions was developed. Using catalytic amounts (10 mol %) of phosphines and blue light irradiation, various olefins are transformed into the corresponding addition products within short reaction times. For this purpose, a modular and convenient 3D printed photoreactor was constructed, which is presented as an open source model. The reaction presumably proceeds upon generation of perfluoroalkyl radicals, which are formed by catalyst-induced absorption enhancement.
RESUMEN
Surface-bound porphyrins are promising candidates for molecular switches, electronics and spintronics. Here, we studied the structural and the electronic properties of Fe-tetra-pyridil-porphyrin adsorbed on Au(1 1 1) in the monolayer regime. We combined scanning tunneling microscopy/spectroscopy, ultraviolet photoemission, and two-photon photoemission to determine the energy levels of the frontier molecular orbitals. We also resolved an excitonic state with a binding energy of 420 meV, which allowed us to compare the electronic transport gap with the optical gap.
RESUMEN
The magnetic properties of metal-organic complexes are strongly influenced by conformational changes in the ligand. The flexibility of Fe-tetra-pyridyl-porphyrin molecules leads to different adsorption configurations on a Au(111) surface. By combining low-temperature scanning tunneling spectroscopy and atomic force microscopy, we resolve a correlation of the molecular configuration with different spin states and magnitudes of magnetic anisotropy. When the macrocycle exhibits a laterally undistorted saddle shape, the molecules lie in a S = 1 state with axial anisotropy arising from a square-planar ligand field. If the symmetry in the molecular ligand field is reduced by a lateral distortion of the molecule, we find a finite contribution of transverse anisotropy. Some of the distorted molecules lie in a S = 2 state, again exhibiting substantial transverse anisotropy.
RESUMEN
Three mono-fluorinated derivatives of the flavin core system 10-methyl-isoalloxazine (MIA) were synthesized. Aqueous solutions of these compounds were characterized by steady-state and time-resolved spectroscopy. The positions for the fluorination (6, 7 and 8) were motivated by the nodal structure of the frontier orbitals of MIA. In comparison with MIA, the fluorination results in bathochromic (6F- and 7F-MIA) and hypsochromic (8F-MIA) shifts of the adiabatic excitation energy of the lowest allowed transition. Shifts of up to ~500 cm-1 were observed. These spectroscopic shifts go along with changes in fluorescence quantum yields and lifetimes. In addition, triplet yields are affected. For 7F-MIA, a 50% increase in the fluorescence quantum yield as well as a 50% decrease in triplet yield is observed rendering the compound interesting for fluorescence applications. The measured effects are discussed in terms of qualitative perturbation theory.
RESUMEN
The activation of perfluoroalkyl iodides by the frustrated Lewis pair tris(pentafluorophenyl)borane and tri-tert-butylphosphine is described. By abstraction of both a fluorine and an iodine atom, an iodophosphonium fluoroborate salt is formed. In the presence of alkenes the corresponding iodoperfluoroalkylation products are generated regioselectively. First mechanistic investigations support a radical mechanism.
RESUMEN
The total synthesis of enantiomerically pure (+)-mesembrine is described. The central pyrrolidine moiety incorporating a quaternary, all-carbon-substituted stereocenter was constructed employing an asymmetric gold-catalyzed cycloisomerization of a 1,4-diynamide.
RESUMEN
The intramolecular bromoamination of allylated aldoxime ethers leads first to isoxazolidinium salts which then undergo a skeletal rearrangement to form bromo-5,6-dihydro-4H-1,3-oxazines. Aliphatic aldoxime ethers with α-protons undergo multiple brominations before rearrangement.
RESUMEN
PDZ (PSD-95, Dlg, ZO-1) domains are ubiquitous interaction modules that are involved in many cellular signal transduction pathways. Interference with PDZ-mediated protein-protein interactions has important implications in disease-related signaling processes. For this reason, PDZ domains have gained attention as potential targets for inhibitor design and, in the long run, drug development. Herein we report the development of small molecules to probe the function of the PDZ domain from human AF6 (ALL1-fused gene from chromosomeâ 6), which is an essential component of cell-cell junctions. These compounds bind to AF6 PDZ with substantially higher affinity than the peptide (Ile-Gln-Ser-Val-Glu-Val) derived from its natural ligand, EphB2. In intact cells, the compounds inhibit the AF6-Bcr interaction and interfere with epidermal growth factor (EGF)-dependent signaling.
Asunto(s)
Cinesinas/antagonistas & inhibidores , Miosinas/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/química , Secuencia de Aminoácidos , Sitios de Unión , Humanos , Cinesinas/metabolismo , Ligandos , Simulación del Acoplamiento Molecular , Miosinas/metabolismo , Dominios PDZ , Péptidos/química , Péptidos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Receptor EphB2/química , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/metabolismo , Relación Estructura-ActividadRESUMEN
A practical route for the stereoselective synthesis of (2S,3S)-5,5,5-trifluoroisoleucine (L-5-F3Ile) and (2R,3S)-5,5,5-trifluoro-allo-isoleucine (D-5-F3-allo-Ile) was developed. The hydrophobicity of L-5-F3Ile was examined and it was incorporated into a model peptide via solid phase peptide synthesis to determine its α-helix propensity. The α-helix propensity of 5-F3Ile is significantly lower than Ile, but surprisingly high when compared with 4'-F3Ile.