Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nat Commun ; 15(1): 2198, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38503727

RESUMEN

Metastasis arises from disseminated tumour cells (DTCs) that are characterized by intrinsic phenotypic plasticity and the capability of seeding to secondary organs. DTCs can remain latent for years before giving rise to symptomatic overt metastasis. In this context, DTCs fluctuate between a quiescent and proliferative state in response to systemic and microenvironmental signals including immune-mediated surveillance. Despite its relevance, how intrinsic mechanisms sustain DTCs plasticity has not been addressed. By interrogating the epigenetic state of metastatic cells, we find that tumour progression is coupled with the activation of oncogenic enhancers that are organized in variable interconnected chromatin domains. This spatial chromatin context leads to the activation of a robust transcriptional response upon repeated exposure to retinoic acid (RA). We show that this adaptive mechanism sustains the quiescence of DTCs through the activation of the master regulator SOX9. Finally, we determine that RA-stimulated transcriptional memory increases the fitness of metastatic cells by supporting the escape of quiescent DTCs from NK-mediated immune surveillance. Overall, these findings highlight the contribution of oncogenic enhancers in establishing transcriptional memories as an adaptive mechanism to reinforce cancer dormancy and immune escape, thus amenable for therapeutic intervention.


Asunto(s)
Vigilancia Inmunológica , Secuencias Reguladoras de Ácidos Nucleicos , División Celular , Línea Celular Tumoral , Cromatina
2.
Front Immunol ; 14: 1266265, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38035116

RESUMEN

Background: Diffuse large B-cell lymphoma (DLBCL) is a hematological malignancy representing one-third of non-Hodgkin's lymphoma cases. Notwithstanding immunotherapy in combination with chemotherapy (R-CHOP) is an effective therapeutic approach for DLBCL, a subset of patients encounters treatment resistance, leading to low survival rates. Thus, there is an urgent need to identify predictive biomarkers for DLBCL including the elderly population, which represents the fastest-growing segment of the population in Western countries. Methods: Gene expression profiles of n=414 DLBCL biopsies were retrieved from the public dataset GSE10846. Differentially expressed genes (DEGs) (fold change >1.4, p-value <0.05, n=387) have been clustered in responder and non-responder patient cohorts. An enrichment analysis has been performed on the top 30 up-regulated genes of responder and non-responder patients to identify the signatures involved in gene ontology (MSigDB). The more significantly up-regulated DEGs have been validated in our independent collection of formalin-fixed paraffin-embedded (FFPE) biopsy samples of elderly DLBCL patients, treated with R-CHOP as first-line therapy. Results: From the analysis of two independent cohorts of DLBCL patients emerged a gene signature able to predict the response to R-CHOP therapy. In detail, expression levels of EBF1, MYO6, CALR are associated with a significant worse overall survival. Conclusions: These results pave the way for a novel characterization of DLBCL biomarkers, aiding the stratification of responder versus non-responder patients.


Asunto(s)
Linfoma de Células B Grandes Difuso , Linfoma no Hodgkin , Humanos , Anciano , Anticuerpos Monoclonales de Origen Murino/uso terapéutico , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Rituximab/uso terapéutico , Linfoma no Hodgkin/tratamiento farmacológico , Ciclofosfamida/uso terapéutico , Vincristina/uso terapéutico , Prednisona/uso terapéutico , Doxorrubicina/uso terapéutico , Biomarcadores , Transactivadores
3.
Oncogene ; 41(15): 2196-2209, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35217791

RESUMEN

Breast cancer (BC) is the second cause of cancer-related deceases in the worldwide female population. Despite the successful treatment advances, 25% of BC develops resistance to current therapeutic regimens, thereby remaining a major hurdle for patient management. Current therapies, targeting the molecular events underpinning the adaptive resistance, still require effort to improve BC treatment. Using BC sphere cells (BCSphCs) as a model, here we showed that BC stem-like cells express high levels of Myc, which requires the presence of the multifunctional DNA/RNA binding protein Sam68 for the DNA-damage repair. Analysis of a cohort of BC patients displayed that Sam68 is an independent negative factor correlated with the progression of the disease. Genetic inhibition of Sam68 caused a defect in PARP-induced PAR chain synthesis upon DNA-damaging insults, resulting in cell death of TNBC cells. In contrast, BC stem-like cells were able to survive due to an upregulation of Rad51. Importantly, the inhibition of Rad51 showed synthetic lethal effect with the silencing of Sam68, hampering the cell viability of patient-derived BCSphCs and stabilizing the growth of tumor xenografts, including those TNBC carrying BRCA mutation. Moreover, the analysis of Myc, Sam68 and Rad51 expression demarcated a signature of a poor outcome in a large cohort of BC patients. Thus, our findings suggest the importance of targeting Sam68-PARP1 axis and Rad51 as potential therapeutic candidates to counteract the expansion of BC cells with an aggressive phenotype.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Neoplasias de la Mama , Proteínas de Unión al ADN , Proteínas de Unión al ARN , Recombinasa Rad51 , Neoplasias de la Mama Triple Negativas , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Humanos , Células Madre Neoplásicas/patología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Neoplasias de la Mama Triple Negativas/patología
4.
Cancers (Basel) ; 14(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35158939

RESUMEN

Despite advances in the curative approach, the survival rate of advanced colorectal cancer (CRC) patients is still poor, which is likely due to the emergence of cancer cell clones resistant to the available therapeutic options. We have already shown that CD44v6-positive CRC stem cells (CR-CSCs) are refractory toward standard anti-tumor therapeutic agents due to the activation of the PI3K pathway together with high HER2 expression levels. Tumor microenvironmental cytokines confer resistance to CR-CSCs against HER2/PI3K targeting by enhancing activation of the MAPK pathway. Here, we show that the CSC compartment, spared by BRAF inhibitor-based targeted therapy, is associated with increased expression levels of CD44v6 and Myc and retains boosted clonogenic activity along with residual tumorigenic potential. Inhibition of Myc transcription, downstream of the MAPK cascade components, and PI3K pathway activity was able to overcome the protective effects of microenvironmental cytokines, affecting the survival and the clonogenic activity of CR-CSCs, regardless of their mutational background. Likewise, the double targeting induced stabilization of mouse tumor avatars. Altogether, these data outline the rationale for dual kinase targeting of CR-CSCs to prevent their adaptive response, which would lead to disease progression.

5.
Front Cell Dev Biol ; 9: 690306, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34778245

RESUMEN

Metastatic disease represents the major cause of death in oncologic patients worldwide. Accumulating evidence have highlighted the relevance of a small population of cancer cells, named cancer stem cells (CSCs), in the resistance to therapies, as well as cancer recurrence and metastasis. Standard anti-cancer treatments are not always conclusively curative, posing an urgent need to discover new targets for an effective therapy. Kinases and phosphatases are implicated in many cellular processes, such as proliferation, differentiation and oncogenic transformation. These proteins are crucial regulators of intracellular signaling pathways mediating multiple cellular activities. Therefore, alterations in kinases and phosphatases functionality is a hallmark of cancer. Notwithstanding the role of kinases and phosphatases in cancer has been widely investigated, their aberrant activation in the compartment of CSCs is nowadays being explored as new potential Achille's heel to strike. Here, we provide a comprehensive overview of the major protein kinases and phosphatases pathways by which CSCs can evade normal physiological constraints on survival, growth, and invasion. Moreover, we discuss the potential of inhibitors of these proteins in counteracting CSCs expansion during cancer development and progression.

6.
Front Oncol ; 11: 702642, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34354950

RESUMEN

Despite the recent advances in cancer patient management and in the development of targeted therapies, systemic chemotherapy is currently used as a first-line treatment for many cancer types. After an initial partial response, patients become refractory to standard therapy fostering rapid tumor progression. Compelling evidence highlights that the resistance to chemotherapeutic regimens is a peculiarity of a subpopulation of cancer cells within tumor mass, known as cancer stem cells (CSCs). This cellular compartment is endowed with tumor-initiating and metastasis formation capabilities. CSC chemoresistance is sustained by a plethora of grow factors and cytokines released by neighboring tumor microenvironment (TME), which is mainly composed by adipocytes, cancer-associated fibroblasts (CAFs), immune and endothelial cells. TME strengthens CSC refractoriness to standard and targeted therapies by enhancing survival signaling pathways, DNA repair machinery, expression of drug efflux transporters and anti-apoptotic proteins. In the last years many efforts have been made to understand CSC-TME crosstalk and develop therapeutic strategy halting this interplay. Here, we report the combinatorial approaches, which perturb the interaction network between CSCs and the different component of TME.

7.
Artículo en Inglés | MEDLINE | ID: mdl-32982967

RESUMEN

Thyroid tumors are extremely heterogeneous varying from almost benign tumors with good prognosis as papillary or follicular tumors, to the undifferentiated ones with severe prognosis. Recently, several models of thyroid carcinogenesis have been described, mostly hypothesizing a major role of the thyroid cancer stem cell (TCSC) population in both cancer initiation and metastasis formation. However, the cellular origin of TCSC is still incompletely understood. Here, we review the principal epigenetic mechanisms relevant to TCSC origin and maintenance in both well-differentiated and anaplastic thyroid tumors. Specifically, we describe the alterations in DNA methylation, histone modifiers, and microRNAs (miRNAs) involved in TCSC survival, focusing on the potential of targeting aberrant epigenetic modifications for developing novel therapeutic approaches. Moreover, we discuss the bidirectional relationship between TCSCs and immune cells. The cells of innate and adaptive response can promote the TCSC-driven tumorigenesis, and conversely, TCSCs may favor the expansion of immune cells with protumorigenic functions. Finally, we evaluate the role of the tumor microenvironment and the complex cross-talk of chemokines, hormones, and cytokines in regulating thyroid tumor initiation, progression, and therapy refractoriness. The re-education of the stromal cells can be an effective strategy to fight thyroid cancer. Dissecting the genetic and epigenetic landscape of TCSCs and their interactions with tumor microenvironment cells is urgently needed to select more appropriate treatment and improve the outcome of patients affected by advanced differentiated and undifferentiated thyroid cancers.


Asunto(s)
Metástasis de la Neoplasia/patología , Células Madre Neoplásicas/patología , Neoplasias de la Tiroides/patología , Metilación de ADN , Histonas/genética , Histonas/metabolismo , Humanos , MicroARNs/genética , Metástasis de la Neoplasia/genética , Células Madre Neoplásicas/metabolismo , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , Microambiente Tumoral
8.
Cancers (Basel) ; 12(6)2020 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-32486505

RESUMEN

Although improvement in early diagnosis and treatment ameliorated life expectancy of cancer patients, metastatic disease still lacks effective therapeutic approaches. Resistance to anticancer therapies stems from the refractoriness of a subpopulation of cancer cells-termed cancer stem cells (CSCs)-which is endowed with tumor initiation and metastasis formation potential. CSCs are heterogeneous and diverge by phenotypic, functional and metabolic perspectives. Intrinsic as well as extrinsic stimuli dictated by the tumor microenvironment (TME)have critical roles in determining cell metabolic reprogramming from glycolytic toward an oxidative phenotype and vice versa, allowing cancer cells to thrive in adverse milieus. Crosstalk between cancer cells and the surrounding microenvironment occurs through the interchange of metabolites, miRNAs and exosomes that drive cancer cells metabolic adaptation. Herein, we identify the metabolic nodes of CSCs and discuss the latest advances in targeting metabolic demands of both CSCs and stromal cells with the scope of improving current therapies and preventing cancer progression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA