Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36679163

RESUMEN

The development of electronic skins and wearable devices is rapidly growing due to their broad application fields, such as for biomedical, health monitoring, or robotic purposes. In particular, tactile sensors based on piezoelectric polymers, which feature self-powering capability, have been widely used thanks to their flexibility and light weight. Among these, poly(vinylidenefluoride-trifluoroethylene) (PVDF-TrFE) presents enhanced piezoelectric properties, especially if manufactured in a nanofiber shape. In this work, the enhanced piezoelectric performances of PVDF-TrFE nanofibers were exploited to manufacture a flexible sensor which can be used for wearable applications or e-skin. The piezoelectric signal was collected by carbon black (CB)-based electrodes, which were added to the active layer in a sandwich-like structure. The sensor was electromechanically characterized in a frequency range between 0.25 Hz and 20 Hz-which is consistent with human activities (i.e., gait cycle or accidental bumps)-showing a sensitivity of up to 4 mV/N. The parameters of the signal acquisition circuit were tuned to enable the sensor to work at the required frequency. The proposed electrical model of the nanofibrous piezoelectric sensor was validated by the experimental results. The sensitivity of the sensor remained above 77.5% of its original value after 106 cycles of fatigue testing with a 1 kN compressive force.

2.
Nanomaterials (Basel) ; 11(1)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445553

RESUMEN

In the pursuit of designing a linear soft actuator with a high force-to-weight ratio and a stiffening behavior, this paper analyzes the electrostrictive effect of the poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) polymer in the form of film and aligned electrospun nanofiber mat. An experimental setup is realized to evaluate the electrostrictive effect of the specimens disjointly from the Maxwell stress. In particular, an uniaxial load test is designed to evaluate the specimens' forces produced by their axial contraction (i.e., the electrostrictive effect) when an external electric field is applied, while an uniaxial tensile load test is designed to show the specimens' stiffening properties. This electro-mechanical analysis demonstrates that both the film and the nanofiber mat are electrostrictive, and that the nanofiber mat exhibits a force-to-weight ratio ∼65% higher than the film and, therefore, a larger electrostrictive effect. Moreover, both the film and the nanofiber mat show a stiffening behavior, which is more evident for the nanofiber mat than the film and is proportional to the weight of the material. This study concludes that, thanks to its electro-mechanical properties, the poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene), especially in the form of aligned electrospun nanofiber mat, has high potential to be used as electro-active polymer for soft actuators in biomedical and biorobotics applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA