Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Front Chem ; 12: 1422616, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957405

RESUMEN

Reflectance spectroscopy has emerged as a powerful analytical technique in the field of dermatology, offering a non-invasive strategy to assess several cutaneous properties and skin response to topical products. By analyzing reflected light across different wavelengths, reflectance spectroscopy allows the quantification of cutaneous parameters, such as erythema index and melanin content. Moreover, this analytical technique enables the monitoring of any changes in skin physiology facilitating the assessment of long-term effects of topical products as well as predicting cutaneous diseases. This review provides an overview of the application of reflectance spectroscopy in investigating skin properties and reaction to topical applied products, including both pharmaceutical and cosmetic formulations, thereby aiding in the development of personalized solutions tailored to individual needs.

2.
Biomater Sci ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940612

RESUMEN

PEGylation is currently used for the synthesis of stealth liposomes and to enhance the pharmacokinetic and biopharmaceutical properties of payloads. PEGylated dendron phospholipids can decrease the detachment of polyethylene glycol (PEG) from the liposomal surface owing to an increased hydrophobic anchoring effect on the phospholipid bilayer of liposomes and thus generating super stealth liposomes that are suitable for the systemic delivery of anticancer drugs. Herein, doxorubicin hydrochloride-loaded super stealth liposomes were studied for the treatment of breast cancer lung metastasis in an animal model. The results demonstrated that the super stealth liposomes had suitable physicochemical properties for in vivo administration and could significantly increase the efficacy of doxorubicin in breast cancer lung metastasis tumor-bearing mice compared to the free drug. The super stealth liposomes also increased doxorubicin accumulation inside the tumor tissue. The permanence of PEG on the surface of the super stealth liposomes favored the formation of a depot of therapeutic nanocarriers inside the tumor tissue by improving their permanence after stopping treatment. The doxorubicin-loaded super stealth liposomes increased the survival of the mouse tumor model. These promising results demonstrate that the doxorubicin-loaded super stealth liposomes could be an effective nanomedicine to treat metastatic breast cancer.

3.
ACS Appl Bio Mater ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38608313

RESUMEN

Deformable nanovesicles have a crucial role in topical drug delivery through the skin, due to their capability to pass intact the stratum corneum and epidermis (SCE) and significantly increase the efficacy and accumulation of payloads in the deeper layers of the skin. Namely, lipid-based ultradeformable nanovesicles are versatile and load bioactive molecules with different physicochemical properties. For this reason, this study aims to make oleic acid based nanovesicles (oleosomes) for the codelivery of icariin and sodium naproxen and increase their permeation through the skin. Oleosomes have suitable physicochemical properties and long-term stability for a potential dermal or transdermal application. The inclusion of oleic acid in the lipid bilayer increases 3-fold the deformable properties of oleosomes compared to conventional liposomes and significantly improves the percutaneous permeation of icariin and sodium naproxen through the human SCE membranes compared to hydroalcoholic solutions of both drugs. The tolerability studies on human volunteers demonstrate that oleosomes are safer and speed up the recovery of transepidermal water loss (TEWL) baselines compared to saline solution. These results highlight promising properties of icariin/sodium naproxen coloaded oleosomes for the treatment of skin disorders and suggest the potential future applications of these nanovesicles for further in vivo experiments.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38478324

RESUMEN

Cerebrovascular impairment represents one of the main causes of death worldwide with a mortality rate of 5.5 million per year. The disability of 50% of surviving patients has high social impacts and costs in long period treatment for national healthcare systems. For these reasons, the efficacious clinical treatment of patients, with brain ischemic stroke, remains a medical need. To this aim, a liposome nanomedicine, with monosialic ganglioside type 1 (GM1), OX26 (an anti-transferrin receptor antibody), and CDP-choline (a neurotrophic drug) (CDP-choline/OX26Lip) was prepared. CDP-choline/OX26Lip were prepared by a freeze and thaw method and then extruded through polycarbonate filters, to have narrow size distributed liposomes of ~80 nm. CDP-choline/OX26Lip were stable in human serum, they had suitable pharmacokinetic properties, and 30.0 ± 4.2% of the injected drug was still present in the blood stream 12 h after its systemic injection. The post-ischemic therapeutic effect of CDP-choline/OX26Lip is higher than CDP-choline/Lip, thus showing a significantly high survival rate of the re-perfused post-ischemic rats, i.e. 96% and 78% after 8 days. The treatment with CDP-choline/OX26Lip significantly decreased the peroxidation rate of ~5-times compared to CDP-choline/Lip; and the resulting conjugated dienes, that was 13.9 ± 1.1 mmol/mg proteins for CDP-choline/Lip and 3.1 ± 0.8 for CDP-choline/OX26Lip. OX26 increased the accumulation of GM1-liposomes in the brain tissues and thus the efficacious of CDP-choline. Therefore, this nanomedicine may represent a strategy for the reassessment of CDP-choline to treat post-ischemic events caused by brain stroke, and respond to a significant clinical need.

5.
Drug Deliv Transl Res ; 13(12): 3154-3168, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37365403

RESUMEN

Despite the efforts and advances done in the last few decades, cancer still remains one of the main leading causes of death worldwide. Nanomedicine and in particular extracellular vesicles are one of the most potent tools to improve the effectiveness of anticancer therapies. In these attempts, the aim of this work is to realize a hybrid nanosystem through the fusion between the M1 macrophages-derived extracellular vesicles (EVs-M1) and thermoresponsive liposomes, in order to obtain a drug delivery system able to exploit the intrinsic tumor targeting capability of immune cells reflected on EVs and thermoresponsiveness of synthetic nanovesicles. The obtained nanocarrier has been physicochemically characterized, and the hybridization process has been validated by cytofluorimetric analysis, while the thermoresponsiveness was in vitro confirmed through the use of a fluorescent probe. Tumor targeting features of hybrid nanovesicles were in vivo investigated on melanoma-induced mice model monitoring the accumulation in tumor site through live imaging and confirmed by cytofluorimetric analysis, showing higher targeting properties of hybrid nanosystem compared to both liposomes and native EVs. These promising results confirmed the ability of this nanosystem to combine the advantages of both nanotechnologies, also highlighting their potential use as effective and safe personalized anticancer nanomedicine.


Asunto(s)
Liposomas , Melanoma , Animales , Ratones , Línea Celular Tumoral , Macrófagos , Sistemas de Liberación de Medicamentos
6.
Drug Resist Updat ; 68: 100956, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36958083

RESUMEN

Multidrug resistance (MDR) is currently a big challenge in cancer therapy and limits its success in several patients. Tumors use the MDR mechanisms to colonize the host and reduce the efficacy of chemotherapeutics that are injected as single agents or combinations. MDR mechanisms are responsible for inactivation of drugs and formbiological barriers in cancer like the drug efflux pumps, aberrant extracellular matrix, hypoxic areas, altered cell death mechanisms, etc. Nanocarriers have some potential to overcome these barriers and improve the efficacy of chemotherapeutics. In fact, they are versatile and can deliver natural and synthetic biomolecules, as well as RNAi/DNAi, thus providing a controlled release of drugs and a synergistic effect in tumor tissues. Biocompatible and safe multifunctional biopolymers, with or without specific targeting molecules, modify the surface and interface properties of nanocarriers. These modifications affect the interaction of nanocarriers with cellular models as well as the selection of suitable models for in vitro experiments. MDR cancer cells, and particularly their 2D and 3D models, in combination with anatomical and physiological structures of tumor tissues, can boost the design and preparation of nanomedicines for anticancer therapy. 2D and 3D cancer cell cultures are suitable models to study the interaction, internalization, and efficacy of nanocarriers, the mechanisms of MDR in cancer cells and tissues, and they are used to tailor a personalized medicine and improve the efficacy of anticancer treatment in patients. The description of molecular mechanisms and physio-pathological pathways of these models further allow the design of nanomedicine that can efficiently overcome biological barriers involved in MDR and test the activity of nanocarriers in 2D and 3D models of MDR cancer cells.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Resistencia a Múltiples Medicamentos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Nanomedicina , Sistemas de Liberación de Medicamentos , Portadores de Fármacos/química , Resistencia a Antineoplásicos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
7.
ACS Nano ; 16(12): 19665-19690, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36512378

RESUMEN

Joint diseases are one of the most common causes of morbidity and disability worldwide. The main diseases that affect joint cartilage are osteoarthritis and rheumatoid arthritis, which require chronic treatment focused on symptomatic relief. Conventional drugs administered through systemic or intra-articular routes have low accumulation and/or retention in articular cartilage, causing dose-limiting toxicities and reduced efficacy. Therefore, there is an urgent need to develop improved strategies for drug delivery, in particular, the use of micro- and nanotechnology-based methods. Encapsulation of therapeutic agents in delivery systems reduces drug efflux from the joint and protects against rapid cellular and enzymatic clearance following intra-articular injection. Consequently, the use of drug delivery systems decreases side effects and increases therapeutic efficacy due to enhanced drug retention in the intra-articular space. Additionally, the frequency of intra-articular administration is reduced, as delivery systems enable sustained drug release. This review summarizes various advanced drug delivery systems, such as nano- and microcarriers, developed for articular cartilage diseases.


Asunto(s)
Artritis Reumatoide , Cartílago Articular , Osteoartritis , Humanos , Sistemas de Liberación de Medicamentos , Osteoartritis/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico
8.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36297318

RESUMEN

Idebenone (IDE) is a powerful antioxidant that is potentially active towards cerebral diseases, but its low water solubility and fast first pass metabolism reduce its accumulation in the brain, making it ineffective. In this work, we developed cyclodextrin-based chitosan nanospheres (CS NPs) as potential carriers for nose-to-brain targeting of IDE. Sulfobutylether-ß-cyclodextrin (SBE-ß-CD) was used as a polyanion for chitosan (CS) and as a complexing agent for IDE, permitting its encapsulation into nanospheres (NPs) produced in an aqueous solution. Overloading NPs were obtained by adding the soluble IDE/hydroxypropyl-ß-CD (IDE/HP-ß-CD) inclusion complex into the CS or SBE-ß-CD solutions. We obtained homogeneous CS NPs with a hydrodynamic radius of about 140 nm, positive zeta potential (about +28 mV), and good encapsulation efficiency and drug loading, particularly for overloaded NPs. A biphasic release of IDE, finished within 48 h, was observed from overloaded NPs, whilst non-overloaded CS NPs produced a prolonged release, without a burst effect. In vitro biological studies showed the ability of CS NPs to preserve the antioxidant activity of IDE on U373 culture cells. Furthermore, Fourier transform infrared spectroscopy (FT-IR) demonstrated the ability of CS NPs to interact with the excised bovine nasal mucosa, improving the permeation of the drug and potentially favoring its accumulation in the brain.

9.
Biomedicines ; 10(6)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35740274

RESUMEN

The incidence of cancer is increasing dramatically, affecting all ages of the population and reaching an ever higher worldwide mortality rate. The lack of therapies' efficacy is due to several factors such as a delay in diagnosis, tumor regrowth after surgical resection and the occurrence of multidrug resistance (MDR). Tumor-associated immune cells and the tumor microenvironment (TME) deeply affect the tumor's progression, leading to several physicochemical changes compared to physiological conditions. In this scenario, macrophages play a crucial role, participating both in tumor suppression or progression based on the polarization of onco-suppressive M1 or pro-oncogenic M2 phenotypes. Moreover, much evidence supports the pivotal role of macrophage-derived extracellular vesicles (EVs) as mediators in TME, because of their ability to shuttle the cell-cell and organ-cell communications, by delivering nucleic acids and proteins. EVs are lipid-based nanosystems with a broad size range distribution, which reflect a similar composition of native parent cells, thus providing a natural selectivity towards target sites. In this review, we discuss the impact of macrophage-derived EVs in the cancer's fate as well as their potential implications for the development of personalized anticancer nanomedicine.

10.
Biomedicines ; 10(5)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35625775

RESUMEN

Bergamot essential oil (BEO) and Ammonium glycyrrhizinate (AG), naturally derived compounds, have remarkable anti-inflammatory properties, thus making them suitable candidates for the treatment of skin disorders. Despite this, their inadequate physicochemical properties strongly compromise their topical application. Ultradeformable nanocarriers containing both BEO and AG were used to allow their passage through the skin, thus maximizing their therapeutic activity. Physicochemical characterization studies were performed using Zetasizer Nano ZS and Turbiscan Lab®. The dialysis method was used to investigate the release profile of the active compounds. In vivo studies were performed on human healthy volunteers through the X-Rite spectrophotometer. The nanosystems showed suitable features for topical cutaneous administration in terms of mean size, surface charge, size distribution, and long-term stability/storability. The co-delivery of BEO and AG in the deformable systems improved both the release profile kinetic of ammonium glycyrrhizinate and deformability properties of the resulting nanosystems. The topical cutaneous administration on human volunteers confirmed the efficacy of the nanosystems. In detail, BEO and AG-co-loaded ultradeformable vesicles showed a superior activity compared to that recorded from the ones containing AG as a single agent. These results are promising and strongly encourage a potential topical application of AG/BEO co-loaded nanocarriers for anti-inflammatory therapies.

11.
ChemMedChem ; 17(9): e202200067, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35194952

RESUMEN

The use of proper nanocarriers for dermal and transdermal delivery of anti-inflammatory drugs recently gained several attentions in the scientific community because they pass intact and accumulate payloads in the deepest layers of skin tissue. Ascorbyl palmitate-based vesicles (aspasomes) can be considered a promising nanocarrier for dermal and transdermal delivery due to their skin whitening properties and suitable delivery of payloads through the skin. The aim of this study was the synthesis of multidrug Idebenone/naproxen co-loaded aspasomes for the development of an effective anti-inflammatory nanomedicine. Aspasomes had suitable physicochemical properties and were safe in vivo if topically applied on human healthy volunteers. Idebenone/naproxen co-loaded aspasomes demonstrated an increased therapeutic efficacy of payloads compared to the commercially available Naprosyn® gel, with a rapid decrease of chemical-induced erythema on human volunteers. These promising results strongly suggested a potential application of Idebenone/naproxen multidrug aspasomes for the development of an effective skin anti-inflammatory therapy.


Asunto(s)
Naproxeno , Absorción Cutánea , Administración Cutánea , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Sistemas de Liberación de Medicamentos , Humanos , Naproxeno/metabolismo , Naproxeno/farmacología , Naproxeno/uso terapéutico , Piel/metabolismo , Ubiquinona/análogos & derivados
12.
Stem Cells Int ; 2021: 1488829, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34824586

RESUMEN

The natural healing capacity of the tendon tissue is limited due to the hypovascular and cellular nature of this tissue. So far, several conventional approaches have been tested for tendon repair to accelerate the healing process, but all these approaches have their own advantages and limitations. Regenerative medicine and tissue engineering are interdisciplinary fields that aspire to develop novel medical devices, innovative bioscaffold, and nanomedicine, by combining different cell sources, biodegradable materials, immune modulators, and nanoparticles for tendon tissue repair. Different studies supported the idea that bioscaffolds can provide an alternative for tendon augmentation with an enormous therapeutic potentiality. However, available data are lacking to allow definitive conclusion on the use of bioscaffolds for tendon regeneration and repairing. In this review, we provide an overview of the current basic understanding and material science in the field of bioscaffolds, nanomedicine, and tissue engineering for tendon repair.

13.
Molecules ; 26(6)2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33804244

RESUMEN

Periodontal diseases are multifactorial disorders, mainly due to severe infections and inflammation which affect the tissues (i.e., gum and dental bone) that support and surround the teeth. These pathologies are characterized by bleeding gums, pain, bad breath and, in more severe forms, can lead to the detachment of gum from teeth, causing their loss. To date it is estimated that severe periodontal diseases affect around 10% of the population worldwide thus making necessary the development of effective treatments able to both reduce the infections and inflammation in injured sites and improve the regeneration of damaged tissues. In this scenario, the use of 3D scaffolds can play a pivotal role by providing an effective platform for drugs, nanosystems, growth factors, stem cells, etc., improving the effectiveness of therapies and reducing their systemic side effects. The aim of this review is to describe the recent progress in periodontal regeneration, highlighting the influence of materials' properties used to realize three-dimensional (3D)-scaffolds, their bio-physical characteristics and their ability to provide a biocompatible platform able to embed nanosystems.


Asunto(s)
Regeneración Ósea/efectos de los fármacos , Enfermedades Periodontales/terapia , Andamios del Tejido/química , Animales , Materiales Biocompatibles/química , Humanos , Ingeniería de Tejidos/métodos
14.
Adv Exp Med Biol ; 1295: 3-27, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33543453

RESUMEN

Clinical responses and tolerability of conventional nanocarriers (NCs) are sometimes different from those expected in anticancer therapy. Thus, new smart drug delivery systems (DDSs) with stimuli-responsive properties and novel materials have been developed. Several clinical trials demonstrated that these DDSs have better clinical therapeutic efficacy in the treatment of many cancers than free drugs. Composition of DDSs and their surface properties increase the specific targeting of therapeutics versus cancer cells, without affecting healthy tissues, and thus limiting their toxicity versus unspecific tissues. Herein, an extensive revision of literature on NCs used as DDSs for cancer applications has been performed using the available bibliographic databases.


Asunto(s)
Nanopartículas , Neoplasias , Portadores de Fármacos/uso terapéutico , Sistemas de Liberación de Medicamentos , Humanos , Neoplasias/tratamiento farmacológico
15.
Int J Pharm ; 597: 120346, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33545283

RESUMEN

Breast cancer, with around 2 million new cases in 2019, is the second most common cancer worldwide and the second leading cause of cancer death among females. The aim of this work is to prepare a targeting nanoparticle through the conjugation of LinTT1 peptide, a specific molecule targeting p32 protein overexpressed by breast cancer and cancer associated cells, on liposomes' surface. This approach increases the cytotoxic effects of doxorubicin (DOX) and sorafenib (SRF) co-loaded in therapeutic liposomes on both 2D and 3D breast cancer cellular models. The liposome functionalization leads to a higher interaction with 3D breast cancer spheroids than bare ones. Moreover, interaction studies between LinTT1-functionalized liposomes and M2 primary human macrophages show an internalization of 50% of the total nanovesicles that interact with these cells, while the other 50% results only associated to cell surface. This finding suggests the possibility to use the amount of associated liposomes to enrich the hypoxic tumor area, exploiting the ability of M2 macrophages to accumulate in the central core of tumor mass. These promising results highlight the potential use of DOX and SRF co-loaded LinTT1-functionalized liposomes as nanomedicines for the treatment of breast cancer, especially in triple negative cancer cells.


Asunto(s)
Neoplasias de la Mama , Liposomas , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Doxorrubicina/uso terapéutico , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Péptidos/uso terapéutico
16.
ACS Omega ; 6(4): 2973-2989, 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33553916

RESUMEN

Doxorubicin hydrochloride (DOX) is currently used to treat orthotropic and metastatic breast cancer. Because of its side effects, the use of DOX in cancer patients is sometimes limited; for this reason, several scientists tried designing drug delivery systems which can improve drug therapeutic efficacy and decrease its side effects. In this study, we designed, prepared, and physiochemically characterized nonionic surfactant vesicles (NSVs) which are obtained by self-assembling different combinations of hydrophilic (Tween 20) and hydrophobic (Span 20) surfactants, with cholesterol. DOX was loaded in NSVs using a passive and pH gradient remote loading procedure, which increased drug loading from ∼1 to ∼45%. NSVs were analyzed in terms of size, shape, size distribution, zeta potential, long-term stability, entrapment efficiency, and release kinetics, and nanocarriers having the best physiochemical parameters were selected for further in vitro tests. NSVs with and without DOX were stable and showed a sustained drug release up to 72 h. In vitro studies, with MCF-7 and MDA MB 468 cells, demonstrated that NSVs, containing Span 20, were better internalized in MCF-7 and MDA MB 468 cells than NSVs with Tween 20. NSVs increased the anticancer effect of DOX in MCF-7 and MDA MB 468 cells, and this effect is time and dose dependent. In vitro studies using metastatic and nonmetastatic breast cancer cells also demonstrated that NSVs, containing Span 20, had higher cytotoxicity than NSVs with Tween 20. The resulting data suggested that DOX-loaded NSVs could be a promising nanocarrier for the potential treatment of metastatic breast cancer.

17.
Int J Pharm ; 528(1-2): 18-32, 2017 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-28559215

RESUMEN

In order to obtain nanocarriers suitable for the delivery of drugs in the treatment of cancer, pH-responsive nanovesicles capable of facilitating fusion (fusogenic nanovesicles) were synthesized and then their physicochemical characteristics were modified. These nanovesicles were made by combining polysorbates having different physicochemical features with the aim of realizing multiple-targeting nanoformulations suitable for in vitro treatment of cancer cells. Tween21 and Tween80 were self-assembled at different molar concentrations resulting in pH-responsive fusogenic nanovesicles with an average size of less than 150nm, and a narrow size distribution (polydispersity index) value of less than 0.2. Hydrophobic and hydrophilic fluorescent probes were loaded inside the nanovesicles in order to study their pH-responsiveness and fusogenic properties and it was noted that this process did not modify their physicochemical features. The pH-responsiveness and fusogenic assay demonstrated that the nanovesicles containing Tween21 at different molar ratios were pH-responsive and interacted with a synthetic model of a biological membrane supplemented with Ca2+ in the incubation medium. Fifty percent (molar ratio) of Tween21 was replaced with Tween80, since Tween80 can promote the adsorption of apolipoproteins (A-E) onto the surfaces of nanovesicles without altering their pH-responsiveness or fusogenic properties. In fact this equivalent molar concentration of Tween21 and Tween80 also maintained their degree of interaction with the apolipoproteins (A-E). Doxorubicin hydrochloride-loaded nanovesicles were synthesized and physicochemically characterized in order to obtain nanoformulations suitable for anticancer treatment. The therapeutic nanovesicles showed physicochemical properties similar to those of empty nanoformulations, and maintained pH-responsiveness, fusogenic properties and targeting versus the apolipoproteins (A-E). The doxorubicin hydrochloride was loaded into the nanovesicles using both passive and pH gradient remote loading procedures. The latter provided the nanovesicles with an entrapment efficiency percentage of over 30%, which was much higher than the 10% that was obtained using the passive loading procedure. The entrapment efficiency improved up to 60% for the nanovesicles made from the same molar concentration of Tween21 and Tween80. The anticancer activity of doxorubicin hydrochloride-loaded nanovesicles was further tested in vitro using human neuroblastoma (SH-SY5Y) cells which respond to treatment with this chemotherapeutic drug, but the nanovesicles carrying it must cross the BBB by means of specific receptors before the drug can provide a therapeutic effect in vivo. The anticancer activity of these doxorubicin hydrochloride-loaded nanovesicles was time- and dosage- dependent, and the surfactant components making up the nanoformulations was also a determining factor in the efficiency of their activity. These nanovesicles could provide innovative nanotherapeutics for potential in vitro multidrug targeting therapy.


Asunto(s)
Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Polisorbatos/química , Animales , Línea Celular Tumoral , Humanos , Concentración de Iones de Hidrógeno , Ratones , Células RAW 264.7 , Tensoactivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA