Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Med Image Anal ; 72: 102132, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34186431

RESUMEN

PET imaging is an important diagnostic tool for management of patients with cancer and other diseases. Medical decisions based on quantitative PET information could potentially benefit from the availability of tools for evaluation of associated uncertainties. Raw PET data can be viewed as a sample from an inhomogeneous Poisson process so there is the possibility to directly apply bootstrapping to raw projection-domain list-mode data. Unfortunately this is computationally impractical, particularly if data reconstruction is iterative or the acquisition protocol is dynamic. We develop a flexible statistical linear model analysis to be used with multi-frame PET image data to create valid bootstrap samples. The technique is illustrated using data from dynamic PET studies with fluoro-deoxyglucose (FDG) and fluoro-thymidine (FLT) in brain and breast cancer patients. As is often the case with dynamic PET studies, data have been archived without raw list-mode information. Using the bootstrapping technique maps of kinetic parameters and associated uncertainties are obtained. The quantitative performance of the approach is assessed by simulation. The proposed image-domain bootstrap is found to substantially match the projection-domain alternative. Analysis of results points to a close relation between relative uncertainty in voxel-level kinetic parameters and local reconstruction error. This is consistent with statistical theory.


Asunto(s)
Algoritmos , Tomografía de Emisión de Positrones , Encéfalo/diagnóstico por imagen , Simulación por Computador , Humanos , Procesamiento de Imagen Asistido por Computador , Modelos Lineales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA