Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Future Microbiol ; : 1-12, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101446

RESUMEN

Aim: Evaluate the anticandidal effect of Croton heliotropiifolius Kunth essential oil and its interaction with azoles and N-acetylcysteine (NAC) against planktonic cells and biofilms. Materials & methods: Broth microdilution and checkerboard methods were used to evaluate the individual and combined activity with fluconazole and itraconazole (ITRA). The antibiofilm effect of the oil was assessed in 96-well plates alone and combined with ITRA and NAC, and cytotoxicity determined by MTT. Results: The oil inhibited all Candida species growth. The activity was enhanced when associated with ITRA and NAC for planktonic cells and biofilms in formation. The effective concentrations were lower than the toxic ones to V79 cells. Conclusion: C. heliotropiifolius Kunth essential oil is an anticandidal alternative, and can be associated with ITRA and NAC.


Candida is a type of fungus that can cause disease in people. In recent years, the number of available drugs to treat this disease have declined. It is important to search for new drugs. Plants are often used to improve health, so we tested the essential oil of a plant called Croton heliotropiifolius to see if it could kill the fungus. We found that the essential oil could kill the fungus, and could be used with other drugs to improve their effects.

2.
Braz J Microbiol ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39179891

RESUMEN

The increase in fungal resistance is a major public health concern. In this context, Candida spp. is an important genus related to invasive diseases, especially in immunosuppressed patients. The relevance of alternative approaches to increasing fungal resistance stands out, in which products of natural origin demonstrate potential antifungal activity in vitro against Candida spp. In this sense, this work aimed to evaluate the in vitro activity of tannic acid against Candida spp. Minimum inhibitory concentration (MIC) was determined for tannic acid and the antifungals, and the checkerboard assay was performed to analyze the interactions between them. Furthermore, we evaluated the tannic acid antibiofilm activity and its possible mechanism of action. Tannic acid showed MIC ranging to 0.06 to 0.5 µg/ml and showed no loss of effectiveness when combined with antifungals. Also, is safe at the concentrations it exerts its antifungal activity in pre-formed biofilms, as demonstrated by IC50 in murine fibroblasts cells and the hemolytic assay. Additionally, its mechanisms of action can be related with induction of signals that lead to apoptosis in fungal cells.

3.
Braz J Microbiol ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39198376

RESUMEN

Candida species are among the priority pathogens in the area of research and development. Due to the problems associated with resistance to antifungals, new therapeutic alternatives are necessary. In this regard, drug repositioning has gained prominence. The objective of this study was to evaluate the activity of three tricyclic antidepressants (TCAs) - amitriptyline (AMT), nortriptyline (NOR) and clomipramine (CLO) - isolated or associated with antifungals against strains of Candida spp., as well as to analyze the possible mechanism of action. Among the methods used were broth microdilution tests, tolerance level assessment, checkerboard assays, flow cytometry and fluorescence microscopy. Furthermore, Candida cells were visualized after treatments by scanning electron microscopy (SEM). AMT presented MIC 50% in the range of 16 to 128 µg/mL, NOR from 8 to 128 µg/mL, and CLO from 8 to 64 µg/mL, with all three TCAs having a fungicidal inhibitory action profile. For these TCAs, there was synergism with amphotericin B (AMB) in 100% of the isolates. In association with fluconazole (FLC) and itraconazole (ITR), there were mostly indifferent interactions. TCAs isolated and associated with AMB reduced cell viability, promoted DNA fragmentation and damage, caused mitochondrial depolarization, externalization of phosphatidylserine, produced reactive oxygen species (ROS), decreased reduced glutathione (GSH) and increased carbonyl protein levels, causing morphological changes. The results suggest the antifungal mechanism of the TCAs works via the apoptotic pathway.

4.
Microb Pathog ; 193: 106769, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38955237

RESUMEN

The bacterium Escherichia coli is one of the main causes of urinary tract infections. The formation of bacterial biofilms, especially associated with the use of urinary catheters, contributes to the establishment of recurrent infections and the development of resistance to treatment. Strains of E. coli that produce extended-spectrum beta-lactamases (ESBL) have a greater ability to form biofilms. In addition, there is a lack of drugs available in the market with antibiofilm activity. Promethazine (PMZ) is an antihistamine known to have antimicrobial activity against different pathogens, including in the form of biofilms, but there are still few studies of its activity against ESBL E. coli biofilms. The aim of this study was to evaluate the antimicrobial activity of PMZ against ESBL E. coli biofilms, as well as to assess the application of this drug as a biofilm prevention agent in urinary catheters. To this end, the minimum inhibitory concentration and minimum bactericidal concentration of PMZ in ESBL E. coli strains were determined using the broth microdilution assay and tolerance level measurement. The activity of PMZ against the cell viability of the in vitro biofilm formation of ESBL E. coli was analyzed by the MTT colorimetric assay and its ability to prevent biofilm formation when impregnated in a urinary catheter was investigated by counting colony-forming units (CFU) and confirmed by scanning electron microscopy (SEM). PMZ showed bactericidal activity and significantly reduced (p < 0.05) the viability of the biofilm being formed by ESBL E. coli at concentrations of 256 and 512 µg/ml, as well as preventing the formation of biofilm on urinary catheters at concentrations starting at 512 µg/ml by reducing the number of CFUs, as also observed by SEM. Thus, PMZ is a promising candidate to prevent the formation of ESBL E. coli biofilms on abiotic surfaces.


Asunto(s)
Antibacterianos , Biopelículas , Escherichia coli , Pruebas de Sensibilidad Microbiana , Prometazina , Catéteres Urinarios , beta-Lactamasas , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Prometazina/farmacología , Escherichia coli/efectos de los fármacos , beta-Lactamasas/metabolismo , Catéteres Urinarios/microbiología , Antibacterianos/farmacología , Humanos , Infecciones Urinarias/microbiología , Viabilidad Microbiana/efectos de los fármacos , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/tratamiento farmacológico
5.
J Med Microbiol ; 73(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38979984

RESUMEN

Introduction. The development of new antifungal drugs has become a global priority, given the increasing cases of fungal diseases together with the rising resistance to available antifungal drugs. In this scenario, drug repositioning has emerged as an alternative for such development, with advantages such as reduced research time and costs.Gap statement. Propafenone is an antiarrhythmic drug whose antifungal activity is poorly described, being a good candidate for further study.Aim. This study aims to evaluate propafenone activity against different species of Candida spp. to evaluate its combination with standard antifungals, as well as its possible action mechanism.Methodology. To this end, we carried out tests against strains of Candida albicans, Candida auris, Candida parapsilosis, Candida tropicalis, Candida glabrata and Candida krusei based on the evaluation of the MIC, minimum fungicidal concentration and tolerance level, along with checkerboard and flow cytometry tests with clinical strains and cell structure analysis by scanning electron microscopy (SEM).Results. The results showed that propafenone has a 50% MIC ranging from 32 to 256 µg ml-1, with fungicidal activity and positive interactions with itraconazole in 83.3% of the strains evaluated. The effects of the treatments observed by SEM were extensive damage to the cell structure, while flow cytometry revealed the apoptotic potential of propafenone against Candida spp.Conclusion. Taken together, these results indicate that propafenone has the potential for repositioning as an antifungal drug.


Asunto(s)
Antifúngicos , Candida , Pruebas de Sensibilidad Microbiana , Propafenona , Antifúngicos/farmacología , Candida/efectos de los fármacos , Candida/crecimiento & desarrollo , Propafenona/farmacología , Humanos , Itraconazol/farmacología , Sinergismo Farmacológico , Farmacorresistencia Fúngica/efectos de los fármacos , Candidiasis/microbiología , Candidiasis/tratamiento farmacológico , Reposicionamiento de Medicamentos
6.
Future Microbiol ; 19(13): 1157-1170, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39012219

RESUMEN

Aim: To evaluate the antifungal activity of mangiferin against Candida spp. resistant to fluconazole.Materials & methods: The antifungal activity of mangiferin was assessed using broth microdilution and its interaction with azoles and amphotericin B was evaluated by checkerboard. The activity of mangiferin against Candida spp. biofilms was assessed using the MTT colorimetric assay and its possible mechanism of action was evaluated using flow cytometry.Results: Mangiferin showed activity against Candida albicans, Candida tropicalis and Candida parapsilosis resistant to fluconazole and showed synergism with azoles and amphotericin B. Mangiferin increased the activity of antifungals against Candida biofilms and caused depolarization of the mitochondrial membrane and externalization of phosphatidylserine, suggesting apoptosis.Conclusion: mangiferin combined with antifungals has potential against Candida spp.


Candida is a type of fungus that can make people ill. Over time, many species of Candida have found ways to resist the drugs used to kill them. It is important to find new drugs. We decided to see if a substance called mangiferin works against Candida. We found that mangiferin works against Candida and may help other drugs to work better. We still need to do more studies to find out whether mangiferin can help prevent diseases caused by Candida in the future.


Asunto(s)
Anfotericina B , Antifúngicos , Biopelículas , Candida , Farmacorresistencia Fúngica , Sinergismo Farmacológico , Fluconazol , Pruebas de Sensibilidad Microbiana , Xantonas , Antifúngicos/farmacología , Xantonas/farmacología , Fluconazol/farmacología , Biopelículas/efectos de los fármacos , Farmacorresistencia Fúngica/efectos de los fármacos , Anfotericina B/farmacología , Candida/efectos de los fármacos , Humanos , Apoptosis/efectos de los fármacos , Candida albicans/efectos de los fármacos , Azoles/farmacología
7.
Future Microbiol ; 19(8): 667-679, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38864708

RESUMEN

Aim: The present study investigated the antimicrobial effectiveness of a rhamnolipid complexed with arginine (RLMIX_Arg) against planktonic cells and biofilms of methicillin-resistant Staphylococcus aureus (MRSA). Methodology: Susceptibility testing was performed using the Clinical & Laboratory Standards Institute protocol: M07-A10, checkerboard test, biofilm in plates and catheters and flow cytometry were used. Result: RLMIX_Arg has bactericidal and synergistic activity with oxacillin. RLMIX_Arg inhibits the formation of MRSA biofilms on plates at sub-inhibitory concentrations and has antibiofilm action against MRSA in peripheral venous catheters. Catheters impregnated with RLMIX_Arg reduce the formation of MRSA biofilms. Conclusion: RLMIX_Arg exhibits potential for application in preventing infections related to methicillin-resistant S. aureus biofilms.


[Box: see text].


Asunto(s)
Antibacterianos , Arginina , Biopelículas , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Tensoactivos , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Arginina/farmacología , Arginina/química , Antibacterianos/farmacología , Antibacterianos/química , Humanos , Tensoactivos/farmacología , Tensoactivos/química , Glucolípidos/farmacología , Glucolípidos/química , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/prevención & control , Infecciones Estafilocócicas/tratamiento farmacológico , Oxacilina/farmacología , Sinergismo Farmacológico
8.
Int J Biol Macromol ; 270(Pt 1): 132379, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754680

RESUMEN

Hydrogels based on natural polysaccharides have demonstrated efficacy in epithelial recovery from cutaneous burn wounds. Here, we prepared a double-network hydrogel consisting of galactomannan (from Cassia grandis seeds) and κ-carrageenan (commercially sourced), cross-linked with CaCl2, as a matrix for immobilizing lactoferrin and/or Cramoll, aiming at its applicability as dressings for second-degree burn wounds. The formulations obtained [H - hydrogel, HL - hydrogel + lactoferrin, HC - hydrogel + Cramoll and HLC - hydrogel + lactoferrin + Cramoll] were analyzed rheologically as well as in terms of their stability (pH, color, microbial contamination) for 90 days. The burn was created with an aluminum bar (97 ± 3 °C) in the dorsal region of Wistar rats and subsequently treated with hydrogels (H, HL, HC, HLC) and control saline solution (S). The burn was monitored for 3, 7 and 14 days to evaluate the efficacy of the hydrogels in promoting wound healing. The hydrogels did not reveal significant pH or microbiological changes; there was an increase in brightness and a reduction in opacity for H. The rheological analysis confirmed the gel-like viscoelastic signature of the systems without substantial modification of the basic rheological characteristics, however HLC proved to be more rigid, due to rheological synergy when combining protein biomolecules. Macroscopic analyses confirmed centripetal healing with wound contraction: S < H < HC < HL < HLC. Histopathological analyses showed that hydrogel-treated groups reduced inflammation, tissue necrosis and fibrosis, while promoting re-epithelialization with focal acanthosis, especially in HLC due to a positive synergistic effect, indicating its potential as a promising therapy in the repair of burns.


Asunto(s)
Quemaduras , Carragenina , Galactosa , Hidrogeles , Mananos , Ratas Wistar , Cicatrización de Heridas , Hidrogeles/química , Mananos/química , Mananos/farmacología , Animales , Quemaduras/terapia , Quemaduras/tratamiento farmacológico , Carragenina/química , Cicatrización de Heridas/efectos de los fármacos , Ratas , Galactosa/análogos & derivados , Galactosa/química , Masculino , Lactoferrina/química , Reología
9.
Mol Cell Endocrinol ; 588: 112223, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38556160

RESUMEN

Maternal malnutrition can alter developmental biology, programming health and disease in offspring. The increase in sugar consumption during the peripubertal period, a worldwide concern, also affects health through adulthood. Studies have shown that maternal exposure to a low protein diet (LPD) is associated with an increase in prostate disease with aging. However, the combined effects of maternal LPD and early postnatal sugar consumption on offspring prostate disorders were not investigated. The effects on aging were evaluated using a maternal gestational model with lactational LPD (6% protein) and sugar consumption (10%) from postnatal day (PND) 21-90, associating the consequences on ventral prostate (VP) rats morphophysiology on PND540. An increase was shown in mast cells and in the VP of the CTR + SUG and Gestational and Lactational Low Protein (GLLP) groups. In GLLP + SUG, a significant increase was shown in TGF-ß1 expression in both the systemic and intra-prostatic forms, and SMAD2/3p had increased. The study identified maternal LPD and sugar consumption as risk factors for prostatic homeostasis in senility, activating the TGFß1-SMAD2/3 pathway, a signaling pathway with potential markers for prostatic disorders.


Asunto(s)
Desnutrición , Fenómenos Fisiologicos Nutricionales Maternos , Efectos Tardíos de la Exposición Prenatal , Próstata , Enfermedades de la Próstata , Animales , Masculino , Femenino , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Enfermedades de la Próstata/patología , Enfermedades de la Próstata/etiología , Enfermedades de la Próstata/metabolismo , Desnutrición/complicaciones , Próstata/metabolismo , Próstata/patología , Ratas , Inflamación/patología , Inflamación/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genética , Dieta con Restricción de Proteínas/efectos adversos , Proteína Smad2/metabolismo , Ratas Wistar , Proteína smad3/metabolismo , Proteína smad3/genética , Transducción de Señal , Animales Recién Nacidos , Mastocitos/metabolismo
10.
Biofouling ; 40(2): 165-176, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38425095

RESUMEN

Dual-species biofilms formed by Candida albicans and Staphylococcus aureus have high virulence and drug resistance. In this context, biosurfactants produced by Pseudomonas aeruginosa have been widely studied, of which a new derivative (RLmix_Arg) stands out for possible application in formulations. The objective of this study was to evaluate the antibiofilm activity of RLmix_Arg, both alone and incorporated in a gel prepared with Pluronic F-127, against dual-species biofilms of fluconazole-resistant C. albicans (FRCA) and methicillin-resistant S. aureus (MRSA) in impregnated catheters. Broth microdilution tests, MTT reduction assays of mature biofilms, impregnation of RLmix_Arg and its gel in peripheral venous catheters, durability tests and scanning electron microscopy (SEM) were performed. RLmix_Arg showed antimicrobial activity against Candida spp. and S. aureus, by reducing the cell viability of mixed biofilms of FRCA and MRSA, and preventing their formation in a peripheral venous catheter. The incorporation of this biosurfactant in the Pluronic F-127 gel considerably enhanced its antibiofilm activity. Thus, RLmix_Arg has potential application in gels for impregnation in peripheral venous catheters, helping to prevent development of dual-species biofilms of FRCA and MRSA.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Fluconazol/farmacología , Candida albicans , Staphylococcus aureus , Resistencia a la Meticilina , Biopelículas , Poloxámero/farmacología , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/farmacología , Catéteres , Antibacterianos/farmacología
11.
J Med Microbiol ; 73(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38385528

RESUMEN

Introduction. Candida albicans and Staphylococcus aureus are recognized for their development of resistance and biofilm formation. New therapeutic alternatives are necessary in this context.Hypothesis. Etomidate shows potential application in catheters against mixed biofilms of fluconazole-resistant C. albicans and methicillin-resistant S. aureus (MRSA).Aim. The present study aimed to evaluate the activity of etomidate against mixed biofilms of fluconazole-resistant C. albicans and MRSA.Methodology. The action of etomidate against mature biofilms was verified through the evaluation of biomass and cell viability, and its ability to prevent biofilm formation in peripheral venous catheters was determined based on counts of colony forming units (c.f.u.) and confirmed by morphological analysis through scanning electron microscopy (SEM).Results. Etomidate generated a reduction (P<0.05) in biomass and cell viability starting from a concentration of 250 µg ml-1. In addition, it showed significant ability to prevent the formation of mixed biofilms in a peripheral venous catheter, as shown by a reduction in c.f.u. SEM revealed that treatment with etomidate caused substantial damage to the fungal cells.Conclusion. The results showed the potential of etomidate against polymicrobial biofilms of fluconazole-resistant C. albicans and MRSA.


Asunto(s)
Etomidato , Staphylococcus aureus Resistente a Meticilina , Fluconazol/farmacología , Candida albicans , Antifúngicos/farmacología , Etomidato/farmacología , Biopelículas , Pruebas de Sensibilidad Microbiana
12.
Future Microbiol ; 19: 91-106, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38294293

RESUMEN

Background: Staphylococcus aureus is a human pathogen responsible for high mortality rates. The development of new antimicrobials is urgent. Materials & methods: The authors evaluated the activity of hydralazine along with its synergism with other drugs and action on biofilms. With regard to action mechanisms, the authors evaluated cell viability, DNA damage and molecular docking. Results: MIC and minimum bactericidal concentration values ranged from 128 to 2048 µg/ml. There was synergism with oxacillin (50%) and vancomycin (25%). Hydralazine reduced the viability of biofilms by 50%. After exposure to hydralazine 2× MIC, 58.78% of the cells were unviable, 62.07% were TUNEL positive and 27.03% presented damage in the comet assay (p < 0.05). Hydralazine showed affinity for DNA gyrase and TyrRS. Conclusion: Hydralazine is a potential antibacterial.


Staphylococcus aureus is a bacterium that can cause infection. Infections of S. aureus are becoming difficult to treat, but developing new drugs is a challenge. Repurposing them may be easier. This study looks at the possibility of using hydralazine, a type of medicine used to treat high blood pressure, against S. aureus. The authors found that hydralazine can kill S. aureus and can be used with other antibiotics, including oxacillin and vancomycin. Hydralazine interferes with important processes for the multiplication and survival of this bacterium. These results are preliminary but encouraging. Further studies are needed to confirm the use of hydralazine as a new treatment for S. aureus infections.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus , Meticilina , Resistencia a la Meticilina , Simulación del Acoplamiento Molecular , Antibacterianos/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Pruebas de Sensibilidad Microbiana
14.
J Med Microbiol ; 72(10)2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37801011

RESUMEN

Species of the genus Candida, characterized as commensals of the human microbiota, are opportunistic pathogens capable of generating various types of infections with high associated costs. Considering the limited pharmacological arsenal and the emergence of antifungal-resistant strains, the repositioning of drugs is a strategy used to search for new therapeutic alternatives, in which minocycline and doxycycline have been evaluated as potential candidates. Thus, the objective was to evaluate the in vitro antifungal activity of two tetracyclines, minocycline and doxycycline, and their possible mechanism of action against fluconazole-resistant strains of Candida spp. The sensitivity test for antimicrobials was performed using the broth microdilution technique, and the pharmacological interaction with fluconazole was also analysed using the checkerboard method. To analyse the possible mechanisms of action, flow cytometry assays were performed. The minimum inhibitory concentration obtained was 4-427 µg ml-1 for minocycline and 128-512 µg ml-1 for doxycycline, and mostly indifferent and additive interactions with fluconazole were observed. These tetracyclines were found to promote cellular alterations that generated death by apoptosis, with concentration-dependent reactive oxygen species production and reduced cell viability. Therefore, minocycline and doxycycline present themselves as promising study molecules against Candida spp.


Asunto(s)
Antifúngicos , Fluconazol , Humanos , Fluconazol/farmacología , Antifúngicos/farmacología , Candida , Minociclina/farmacología , Doxiciclina/farmacología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Fúngica
15.
J Med Microbiol ; 72(9)2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37707372

RESUMEN

Introduction. Antibiotic resistance is a major threat to public health, particularly with methicillin-resistant Staphylococcus aureus (MRSA) being a leading cause of antimicrobial resistance. To combat this problem, drug repurposing offers a promising solution for the discovery of new antibacterial agents.Hypothesis. Menadione exhibits antibacterial activity against methicillin-sensitive and methicillin-resistant S. aureus strains, both alone and in combination with oxacillin. Its primary mechanism of action involves inducing oxidative stress.Methodology. Sensitivity assays were performed using broth microdilution. The interaction between menadione, oxacillin, and antioxidants was assessed using checkerboard technique. Mechanism of action was evaluated using flow cytometry, fluorescence microscopy, and in silico analysis.Aim. The aim of this study was to evaluate the in vitro antibacterial potential of menadione against planktonic and biofilm forms of methicillin-sensitive and resistant S. aureus strains. It also examined its role as a modulator of oxacillin activity and investigated the mechanism of action involved in its activity.Results. Menadione showed antibacterial activity against planktonic cells at concentrations ranging from 2 to 32 µg ml-1, with bacteriostatic action. When combined with oxacillin, it exhibited an additive and synergistic effect against the tested strains. Menadione also demonstrated antibiofilm activity at subinhibitory concentrations and effectively combated biofilms with reduced sensitivity to oxacillin alone. Its mechanism of action involves the production of reactive oxygen species (ROS) and DNA damage. It also showed interactions with important targets, such as DNA gyrase and dehydroesqualene synthase. The presence of ascorbic acid reversed its effects.Conclusion. Menadione exhibited antibacterial and antibiofilm activity against MRSA strains, suggesting its potential as an adjunct in the treatment of S. aureus infections. The main mechanism of action involves the production of ROS, which subsequently leads to DNA damage. Additionally, the activity of menadione can be complemented by its interaction with important virulence targets.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Oxacilina , Oxacilina/farmacología , Vitamina K 3/farmacología , Meticilina , Staphylococcus aureus , Especies Reactivas de Oxígeno , Antibacterianos/farmacología , Biopelículas
16.
J Mycol Med ; 33(4): 101431, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37666030

RESUMEN

Fungal infections caused by Cryptococcus spp. pose a threat to health, especially in immunocompromised individuals. The available arsenal of drugs against cryptococcosis is limited, due to their toxicity and/or lack of accessibility in low-income countries, requiring more therapeutic alternatives. Selective serotonin reuptake inhibitors (SSRIs), through drug repositioning, are a promising alternative to broaden the range of new antifungals against Cryptococcus spp. This study evaluates the antifungal activity of three SSRIs, sertraline, paroxetine, and fluoxetine, against Cryptococcus spp. strains, as well as assesses their possible mechanism of action. Seven strains of Cryptococcus spp. were used. Sensitivity to SSRIs, fluconazole, and itraconazole was evaluated using the broth microdilution assay. The interactions resulting from combinations of SSRIs and azoles were investigated using the checkerboard assay. The possible action mechanism of SSRIs against Cryptococcus spp. was evaluated through flow cytometry assays. The SSRIs exhibited in vitro antifungal activity against Cryptococcus spp. strains, with minimum inhibitory concentrations ranging from 2 to 32 µg/mL, and had synergistic and additive interactions with azoles. The mechanism of action of SSRIs against Cryptococcus spp. involved damage to the mitochondrial membrane and increasing the production of reactive oxygen species, resulting in loss of cellular viability and apoptotic cell death. Fluoxetine also was able to cause significant damage to yeast DNA. These findings demonstrate the in vitro antifungal potential of SSRIs against Cryptococcus spp. strains.


Asunto(s)
Cryptococcus neoformans , Cryptococcus , Humanos , Antifúngicos/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Fluoxetina/farmacología , Fluconazol/farmacología , Azoles , Pruebas de Sensibilidad Microbiana
17.
Front Plant Sci ; 14: 1124768, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37465383

RESUMEN

Introduction: Mycosphaerella leaf disease (MLD) is one of the most prevalent foliar diseases of Eucalyptus globulus plantations around the world. Since resistance management strategies have not been effective in commercial plantations, breeding to develop more resistant genotypes is the most promising strategy. Available genomic information can be used to detect genomic regions associated with resistance to MLD, which could significantly speed up the process of genetic improvement. Methods: We investigated the genetic basis of MLD resistance in a breeding population of E. globulus which was genotyped with the EUChip60K SNP array. Resistance to MLD was evaluated through resistance of the juvenile foliage, as defoliation and leaf spot severity, and through precocity of change to resistant adult foliage. Genome-wide association studies (GWAS) were carried out applying four Single-SNP models, a Genomic Best Linear Unbiased Prediction (GBLUP-GWAS) approach, and a Single-step genome-wide association study (ssGWAS). Results: The Single-SNP (model K) and GBLUP-GWAS models detected 13 and 16 SNP-trait associations in chromosomes 2, 3 y 11; whereas the ssGWAS detected 66 SNP-trait associations in the same chromosomes, and additional significant SNP-trait associations in chromosomes 5 to 9 for the precocity of phase change (proportion of adult foliage). For this trait, the two main regions in chromosomes 3 and 11 were identified for the three approaches. The SNPs identified in these regions were positioned near the key miRNA genes, miR156.5 and miR157.4, which have a main role in the regulation of the timing of vegetative change, and also in the response to environmental stresses in plants. Discussion: Our results demonstrated that ssGWAS was more powerful in detecting regions that affect resistance than conventional GWAS approaches. Additionally, the results suggest a polygenic genetic architecture for the heteroblastic transition in E. globulus and identified useful SNP markers for the development of marker-assisted selection strategies for resistance to MLD.

18.
J Med Microbiol ; 72(2)2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36762524

RESUMEN

Candida spp. infections are a serious health problem, especially in patients with risk factors. The acquisition of resistance, often associated with biofilm production, makes treatment more difficult due to the reduced effectiveness of available antifungals. Drug repurposing is a good alternative for the treatment of infections by Candida spp. biofilms. The present study evaluated the in vitro antibiofilm activity of sertraline in reducing the cell viability of forming and matured biofilms, in addition to elucidating whether effective concentrations are safe. Sertraline reduced biofilm cell viability by more than 80 % for all Candida species tested, acting at low and safe concentrations, both on mature biofilm and in preventing its formation, even the one with highest virulence. Its preventive mechanism seemed to be related to binding with ALS3. These data indicate that sertraline is a promising drug with anticandidal biofilm potential in safe doses. However, further studies are needed to elucidate the antibiofilm mechanism and possible application of pharmaceutical forms.


Asunto(s)
Candida , Candidiasis , Humanos , Sertralina/farmacología , Sertralina/uso terapéutico , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Candidiasis/tratamiento farmacológico , Biopelículas , Pruebas de Sensibilidad Microbiana , Candida albicans
19.
Probiotics Antimicrob Proteins ; 15(5): 1221-1233, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-35995908

RESUMEN

The emergence of antibiotic resistance poses a serious and challenging threat to healthcare systems, making it imperative to discover novel therapeutic options. This work reports the isolation and characterization of a thermostable trypsin inhibitor from chia (Salvia hispanica L.) seeds, with antibacterial activity against Staphylococcus aureus sensitive and resistant to methicillin. The trypsin inhibitor ShTI was purified from chia seeds through crude extract heat treatment, followed by affinity and reversed-phase chromatography. Tricine-SDS-PAGE revealed a single glycoprotein band of ~ 11 kDa under nonreducing conditions, confirmed by mass spectrometry analysis (11.558 kDa). ShTI was remarkably stable under high temperatures (100 °C; 120 min) and a broad pH range (2-10; 30 min). Upon exposure to DTT (0.1 M; 120 min), ShTI antitrypsin activity was partially lost (~ 38%), indicating the participation of disulfide bridges in its structure. ShTI is a competitive inhibitor (Ki = 1.79 × 10-8 M; IC50 = 1.74 × 10-8 M) that forms a 1:1 stoichiometry ratio for the ShTI:trypsin complex. ShTI displayed antibacterial activity alone (MICs range from 15.83 to 19.03 µM) and in combination with oxacillin (FICI range from 0.20 to 0.33) against strains of S. aureus, including methicillin-resistant strains. Overproduction of reactive oxygen species and plasma membrane pore formation are involved in the antibacterial action mode of ShTI. Overall, ShTI represents a novel candidate for use as a therapeutic agent for the bacterial management of S. aureus infections.


Asunto(s)
Oxacilina , Staphylococcus aureus , Oxacilina/farmacología , Oxacilina/análisis , Inhibidores de Tripsina/farmacología , Inhibidores de Tripsina/análisis , Salvia hispanica , Antibacterianos/farmacología , Semillas/química , Combinación de Medicamentos
20.
Future Microbiol ; 17: 1363-1379, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36169348

RESUMEN

Aims: This study aimed to evaluate the antibacterial effect of two new cationic surfactants based on phenylalanine-arginine (LPAM) and tryptophan-arginine (LTAM). Materials & methods: Antibacterial activity, mechanism of action and interactions with Staphylococcus aureus enzymes were measured through microbiological, flow cytometry and molecular docking assays, respectively. Results & conclusion: These compounds showed antibacterial activity in the range of 4.06-16.24 µg/ml against planktonic cells and no activity against mature biofilms, since they caused a loss of membrane integrity and increased DNA damage, as revealed by flow cytometry analysis. In silico assays revealed the existence of molecular bonds such as hydrogen bonds, mainly with DNA. Therefore, these compounds have promising pharmacological activity against MRSA strains.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus , Triptófano/farmacología , Pruebas de Sensibilidad Microbiana , Arginina/farmacología , Arginina/química , Tensoactivos/farmacología , Simulación del Acoplamiento Molecular , Infecciones Estafilocócicas/tratamiento farmacológico , Antibacterianos/farmacología , Antibacterianos/química , Biopelículas , Fenilalanina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA