Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Pest Manag Sci ; 74(7): 1616-1622, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29316188

RESUMEN

BACKGROUND: Nitenpyram is a member of the economically important neonicotinoid class of insecticides. The in vivo metabolism of nitenpyram is not well characterised, but cytochrome P450 activity is the major mechanism of resistance to neonicotinoids identified in insect pests, and P450s metabolise other neonicotinoids including imidacloprid. RESULTS: Here, we used the GAL4-UAS targeted expression system to direct RNA interference (RNAi) against the cytochrome P450 redox partners to interrupt P450 functions in specific tissues in Drosophila melanogaster. RNAi of the mitochondrial redox partner defective in the avoidance of repellents (dare) in the digestive tissues reduced nitenpyram mortality, suggesting an activation step in the metabolism of nitenpyram carried out by a mitochondrial P450. RNAi of the mitochondrial cytochrome P450 Cyp12a5, which is expressed in the digestive tissues, resulted in the same phenotype, and transgenic overexpression of Cyp12a5 increased nitenpyram sensitivity. CONCLUSION: These results suggest that in vivo metabolism of nitenpyram by the mitochondrial P450 CYP12A5 results in the formation of a product with higher toxicity than the parent compound. © 2018 Society of Chemical Industry.


Asunto(s)
Familia 12 del Citocromo P450/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Expresión Génica , Insecticidas/metabolismo , Proteínas Mitocondriales/genética , Neonicotinoides/metabolismo , Animales , Familia 12 del Citocromo P450/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/crecimiento & desarrollo , Femenino , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Proteínas Mitocondriales/efectos de los fármacos
2.
G3 (Bethesda) ; 6(7): 2003-12, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27172217

RESUMEN

Ligand-gated chloride channels have established roles in inhibitory neurotransmission in the nervous systems of vertebrates and invertebrates. Paradoxically, expression databases in Drosophila melanogaster have revealed that three uncharacterized ligand-gated chloride channel subunits, CG7589, CG6927, and CG11340, are highly expressed in nonneuronal tissues. Furthermore, subunit copy number varies between insects, with some orders containing one ortholog, whereas other lineages exhibit copy number increases. Here, we show that the Dipteran lineage has undergone two gene duplications followed by expression-based functional differentiation. We used promoter-GFP expression analysis, RNA-sequencing, and in situ hybridization to examine cell type and tissue-specific localization of the three D. melanogaster subunits. CG6927 is expressed in the nurse cells of the ovaries. CG7589 is expressed in multiple tissues including the salivary gland, ejaculatory duct, malpighian tubules, and early midgut. CG11340 is found in malpighian tubules and the copper cell region of the midgut. Overexpression of CG11340 increased sensitivity to dietary copper, and RNAi and ends-out knockout of CG11340 resulted in copper tolerance, providing evidence for a specific nonneuronal role for this subunit in D. melanogaster Ligand-gated chloride channels are important insecticide targets and here we highlight copy number and functional divergence in insect lineages, raising the potential that order-specific receptors could be isolated within an effective class of insecticide targets.


Asunto(s)
Canales de Cloruro/genética , Drosophila melanogaster/genética , Evolución Molecular , Dosificación de Gen , Subunidades de Proteína/genética , Animales , Canales de Cloruro/metabolismo , Sulfato de Cobre/farmacología , Bases de Datos Genéticas , Drosophila melanogaster/clasificación , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/metabolismo , Femenino , Tracto Gastrointestinal/citología , Tracto Gastrointestinal/metabolismo , Duplicación de Gen , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hibridación in Situ , Larva/citología , Larva/efectos de los fármacos , Larva/metabolismo , Masculino , Túbulos de Malpighi/citología , Túbulos de Malpighi/metabolismo , Ovario/citología , Ovario/metabolismo , Filogenia , Regiones Promotoras Genéticas , Subunidades de Proteína/metabolismo , Glándulas Salivales/citología , Glándulas Salivales/metabolismo , Análisis de Secuencia de ARN
3.
Insect Biochem Mol Biol ; 54: 11-21, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25193377

RESUMEN

Extensive use of older generation insecticides may result in pre-existing cross-resistance to new chemical classes acting at the same target site. Phenylpyrazole insecticides block inhibitory neurotransmission in insects via their action on ligand-gated chloride channels (LGCCs). Phenylpyrazoles are broad-spectrum insecticides widely used in agriculture and domestic pest control. So far, all identified cases of target site resistance to phenylpyrazoles are based on mutations in the Rdl (Resistance to dieldrin) LGCC subunit, the major target site for cyclodiene insecticides. We examined the role that mutations in Rdl have on phenylpyrazole resistance in Drosophila melanogaster, exploring naturally occurring variation, and generating predicted resistance mutations by mutagenesis. Natural variation at the Rdl locus in inbred strains of D. melanogaster included gene duplication, and a line containing two Rdl mutations found in a highly resistant line of Drosophila simulans. These mutations had a moderate impact on survival following exposure to two phenylpyrazoles, fipronil and pyriprole. Homology modelling suggested that the Rdl chloride channel pore contains key residues for binding fipronil and pyriprole. Mutagenesis of these sites and assessment of resistance in vivo in transgenic lines showed that amino acid identity at the Ala(301) site influenced resistance levels, with glycine showing greater survival than serine replacement. We confirm that point mutations at the Rdl 301 site provide moderate resistance to phenylpyrazoles in D. melanogaster. We also emphasize the beneficial aspects of testing predicted mutations in a whole organism to validate a candidate gene approach.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/genética , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Receptores de GABA-A/genética , Alanina/genética , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Canales de Cloruro , Dieldrín , Proteínas de Drosophila/metabolismo , Duplicación de Gen , Datos de Secuencia Molecular , Mutación/efectos de los fármacos , Mutación Puntual , Pirazoles/farmacología , Piridinas/farmacología , Receptores de GABA-A/metabolismo
4.
G3 (Bethesda) ; 4(11): 2197-205, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25193493

RESUMEN

Survival of insects on a substrate containing toxic substances such as plant secondary metabolites or insecticides is dependent on the metabolism or excretion of those xenobiotics. The primary sites of xenobiotic metabolism are the midgut, Malpighian tubules, and fat body. In general, gene expression in these organs is reported for the entire tissue by online databases, but several studies have shown that gene expression within the midgut is compartmentalized. Here, RNA sequencing is used to investigate whole-genome expression in subsections of third instar larval midguts of Drosophila melanogaster. The data support functional diversification in subsections of the midgut. Analysis of the expression of gene families that are implicated in the metabolism of xenobiotics suggests that metabolism may not be uniform along the midgut. These data provide a starting point for investigating gene expression and xenobiotic metabolism and other functions of the larval midgut.


Asunto(s)
Drosophila melanogaster/genética , Genoma de los Insectos , Mucosa Intestinal/metabolismo , Transcriptoma , Animales , Secuencia de Bases , Drosophila melanogaster/crecimiento & desarrollo , Perfilación de la Expresión Génica , Larva/metabolismo , Datos de Secuencia Molecular , Especificidad de Órganos , Xenobióticos/metabolismo
5.
Anal Chem ; 86(7): 3525-32, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24568686

RESUMEN

Insecticide resistance is one of the most prevalent examples of anthropogenic genetic change, yet our understanding of metabolic-based resistance remains limited by the analytical challenges associated with rapidly tracking the in vivo metabolites of insecticides at nonlethal doses. Here, using twin ion mass spectrometry analysis of the extracts of whole Drosophila larvae and excreta, we show that (i) eight metabolites of the neonicotinoid insecticide, imidacloprid, can be detected when formed by susceptible larval genotypes and (ii) the specific overtranscription of a single gene product, Cyp6g1, associated with the metabolic resistance to neonicotinoids, results in a significant increase in the formation of three imidacloprid metabolites that are formed in C-H bond activation reactions; that is, Cyp6g1 is directly linked to the enhanced metabolism of imidacloprid in vivo. These results establish a rapid and sensitive method for dissecting the metabolic machinery of insects by directly linking single gene products to insecticide metabolism.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Imidazoles/metabolismo , Insecticidas/metabolismo , Espectrometría de Masas/métodos , Nitrocompuestos/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Drosophila melanogaster , Neonicotinoides
6.
PLoS One ; 9(1): e84879, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24416303

RESUMEN

Widespread use of insecticides has led to insecticide resistance in many populations of insects. In some populations, resistance has evolved to multiple pesticides. In Drosophila melanogaster, resistance to multiple classes of insecticide is due to the overexpression of a single cytochrome P450 gene, Cyp6g1. Overexpression of Cyp6g1 appears to have evolved in parallel in Drosophila simulans, a sibling species of D. melanogaster, where it is also associated with insecticide resistance. However, it is not known whether the ability of the CYP6G1 enzyme to provide resistance to multiple insecticides evolved recently in D. melanogaster or if this function is present in all Drosophila species. Here we show that duplication of the Cyp6g1 gene occurred at least four times during the evolution of different Drosophila species, and the ability of CYP6G1 to confer resistance to multiple insecticides exists in D. melanogaster and D. simulans but not in Drosophila willistoni or Drosophila virilis. In D. virilis, which has multiple copies of Cyp6g1, one copy confers resistance to DDT and another to nitenpyram, suggesting that the divergence of protein sequence between copies subsequent to the duplication affected the activity of the enzyme. All orthologs tested conferred resistance to one or more insecticides, suggesting that CYP6G1 had the capacity to provide resistance to anthropogenic chemicals before they existed. Finally, we show that expression of Cyp6g1 in the Malpighian tubules, which contributes to DDT resistance in D. melanogaster, is specific to the D. melanogaster-D. simulans lineage. Our results suggest that a combination of gene duplication, regulatory changes and protein coding changes has taken place at the Cyp6g1 locus during evolution and this locus may play a role in providing resistance to different environmental toxins in different Drosophila species.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Variaciones en el Número de Copia de ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimología , Evolución Molecular , Regulación Enzimológica de la Expresión Génica/genética , Sitios Genéticos/genética , Resistencia a los Insecticidas/genética , Animales , Variaciones en el Número de Copia de ADN/efectos de los fármacos , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Duplicación de Gen/efectos de los fármacos , Duplicación de Gen/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Sitios Genéticos/efectos de los fármacos , Sistemas de Lectura Abierta/efectos de los fármacos , Sistemas de Lectura Abierta/genética , Especificidad de Órganos , Fenotipo , Especificidad de la Especie
7.
Proc Natl Acad Sci U S A ; 110(36): 14705-10, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-23959864

RESUMEN

The Resistance to Dieldrin gene, Rdl, encodes a GABA-gated chloride channel subunit that is targeted by cyclodiene and phenylpyrazole insecticides. The gene was first characterized in Drosophila melanogaster by genetic mapping of resistance to the cyclodiene dieldrin. The 4,000-fold resistance observed was due to a single amino acid replacement, Ala(301) to Ser. The equivalent change was subsequently identified in Rdl orthologs of a large range of resistant insect species. Here, we report identification of a duplication at the Rdl locus in D. melanogaster. The 113-kb duplication contains one WT copy of Rdl and a second copy with two point mutations: an Ala(301) to Ser resistance mutation and Met(360) to Ile replacement. Individuals with this duplication exhibit intermediate dieldrin resistance compared with single copy Ser(301) homozygotes, reduced temperature sensitivity, and altered RNA editing associated with the resistant allele. Ectopic recombination between Roo transposable elements is involved in generating this genomic rearrangement. The duplication phenotypes were confirmed by construction of a transgenic, artificial duplication integrating the 55.7-kb Rdl locus with a Ser(301) change into an Ala(301) background. Gene duplications can contribute significantly to the evolution of insecticide resistance, most commonly by increasing the amount of gene product produced. Here however, duplication of the Rdl target site creates permanent heterozygosity, providing unique potential for adaptive mutations to accrue in one copy, without abolishing the endogenous role of an essential gene.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Duplicación de Gen , Resistencia a los Insecticidas/genética , Receptores de GABA-A/genética , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Variaciones en el Número de Copia de ADN , Elementos Transponibles de ADN/genética , Dieldrín/toxicidad , Drosophila melanogaster/efectos de los fármacos , Femenino , Expresión Génica , Genes Esenciales/genética , Insecticidas/toxicidad , Dosificación Letal Mediana , Masculino , Modelos Genéticos , Datos de Secuencia Molecular , Tasa de Mutación , Mutación Puntual , Homología de Secuencia de Aminoácido , Temperatura
8.
Insect Biochem Mol Biol ; 43(5): 455-65, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23470655

RESUMEN

Cytochrome P450 CYP6G1 has been implicated in the resistance of Drosophila melanogaster to numerous pesticides. While in vivo and in vitro studies have provided insight to the diverse functions of this enzyme, direct studies on the isolated CYP6G1 enzyme have not been possible due to the need for a source of recombinant enzyme. In the current study, the Cyp6g1 gene was isolated from D. melanogaster and re-engineered for heterologous expression in Escherichia coli. Approximately 460 nmol L⁻¹ of P450 holoenzyme were obtained in 500 mL cultures. The recombinant enzyme was located predominantly within the bacterial cytosol. A two-step purification protocol using Ni-chelate affinity chromatography followed by removal of detergent on a hydroxyapatite column produced essentially homogenous enzyme from both soluble and membrane fractions. Recombinant CYP6G1 exhibited p-nitroanisole O-dealkylation activity but was not active against eleven other typical P450 marker substrates. Substrate-induced binding spectra and IC50 values for inhibition of p-nitroanisole O-dealkylation were obtained for a wide selection of pesticides, namely DDT, imidacloprid, chlorfenvinphos, malathion, endosulfan, dieldrin, dicyclanil, lufenuron and carbaryl, supporting previous in vivo and in vitro studies on Drosophila that have suggested that the enzyme is involved in multi-pesticide resistance in insects.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Resistencia a los Insecticidas , Insecticidas/farmacología , Animales , Sistema Enzimático del Citocromo P-450/aislamiento & purificación , Sistema Enzimático del Citocromo P-450/metabolismo , Proteínas de Drosophila/aislamiento & purificación , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/enzimología , Escherichia coli/enzimología , Escherichia coli/genética , Insecticidas/metabolismo , Reacción en Cadena de la Polimerasa , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Análisis Espectral
9.
Insect Biochem Mol Biol ; 42(12): 918-24, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23023059

RESUMEN

Identifying molecular mechanisms of insecticide resistance is important for preserving insecticide efficacy, developing new insecticides and implementing insect control. The metabolic detoxification of insecticides is a widespread resistance mechanism. Enzymes with the potential to detoxify insecticides are commonly encoded by members of the large cytochrome P450, glutathione S-transferase and carboxylesterase gene families, all rapidly evolving in insects. Here, we demonstrate that the model insect Drosophila melanogaster is useful for functionally validating the role of metabolic enzymes in conferring metabolism-based insecticide resistance. Alleles of three well-characterized genes from different pest insects were expressed in transgenic D. melanogaster : a carboxylesterase gene (αE7) from the Australian sheep blowfly Lucilia cuprina, a glutathione S-transferase gene (GstE2) from the mosquito Anopheles gambiae and a cytochrome P450 gene (Cyp6cm1) from the whitefly Bemisia tabaci. For all genes, expression in D. melanogaster resulted in insecticide resistance phenotypes mirroring those observed in resistant populations of the pest species. Using D. melanogaster to assess the potential for novel metabolic resistance mechanisms to evolve in pest species is discussed.


Asunto(s)
Drosophila melanogaster/genética , Genes de Insecto , Resistencia a los Insecticidas/genética , Modelos Animales , Animales , Animales Modificados Genéticamente/metabolismo , Anopheles/genética , Drosophila melanogaster/enzimología , Femenino , Hemípteros/genética , Masculino , Transgenes
10.
PLoS One ; 7(5): e36544, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22574182

RESUMEN

The sequencing of numerous insect genomes has revealed dynamic changes in the number and identity of cytochrome P450 genes in different insects. In the evolutionary sense, the rapid birth and death of many P450 genes is observed, with only a small number of P450 genes showing orthology between insects with sequenced genomes. It is likely that these conserved P450s function in conserved pathways. In this study, we demonstrate the P450 gene, Cyp301a1, present in all insect genomes sequenced to date, affects the formation of the adult cuticle in Drosophila melanogaster. A Cyp301a1 piggyBac insertion mutant and RNAi of Cyp301a1 both show a similar cuticle malformation phenotype, which can be reduced by 20-hydroxyecdysone, suggesting that Cyp301a1 is an important gene involved in the formation of the adult cuticle and may be involved in ecdysone regulation in this tissue.


Asunto(s)
Secuencia Conservada , Sistema Enzimático del Citocromo P-450/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Drosophila melanogaster/crecimiento & desarrollo , Epidermis/enzimología , Epidermis/crecimiento & desarrollo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/deficiencia , Sistema Enzimático del Citocromo P-450/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/efectos de los fármacos , Ecdisterona/farmacología , Epidermis/anomalías , Epidermis/efectos de los fármacos , Evolución Molecular , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Genoma de los Insectos/genética , Masculino , Mutagénesis Insercional , Fenotipo , Interferencia de ARN , Factores de Tiempo
11.
Insect Biochem Mol Biol ; 41(11): 863-71, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21807095

RESUMEN

Organisms induce the expression of detoxification enzymes such as cytochrome P450s to deal with xenobiotics encountered in the environment. Research using cell culture systems has identified some of the cis-regulatory elements (CREs) and transcription factors involved in the induction of P450 genes in response to xenobiotic challenges. It was recently found that the CREs required for the basal expression of some P450s are distinct from the CREs involved in their induction. How these CREs mediate induction to xenobiotics in a tissue specific manner is not known. In this paper we show that, in Drosophila melanogaster, the induction response of the P450 gene Cyp6g1 to the xenobiotic Phenobarbital (PB) requires the presence of both tissue specific enhancers and a distinct CRE. The CRE does not drive gene expression but is required for the induction response. Site-directed mutagenesis of sequences within the CRE, sequences similar to mouse PB induction sequences, reduces the level of induction by PB, suggesting some degree of mechanistic conservation between flies and mice. This CRE may represent a unique class of CREs that has no inherent role in the basal transcriptional activity of genes, but is required for induction responses. Variations within this class of CREs may explain the variability of gene induction responses.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulación de la Expresión Génica , Animales , Sistema Enzimático del Citocromo P-450/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Factores de Transcripción GATA/metabolismo , Tracto Gastrointestinal/metabolismo , Larva/metabolismo , Túbulos de Malpighi/metabolismo , Ratones , Fenobarbital , Elementos Reguladores de la Transcripción , Xenobióticos
12.
PLoS One ; 6(4): e17295, 2011 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-21541022

RESUMEN

Hsp70 genes may influence the expression of wing abnormalities in Drosophila melanogaster but their effects on variability in quantitative characters and developmental instability are unclear. In this study, we focused on one of the six Hsp70 genes, Hsp70Ba, and investigated its effects on within- and among-individual variability in orbital bristle number, sternopleural bristle number, wing size and wing shape under different environmental conditions. To do this, we studied a newly constructed deletion, Df(3R)ED5579, which encompasses Hsp70Ba and nine non-Hsp genes, in the heterozygous condition and another, Hsp70Ba(304), which deletes only Hsp70Ba, in the homozygous condition. We found no significant effect of both deletions on within-individual variation quantified by fluctuating asymmetry (FA) of morphological traits. On the other hand, the Hsp70Ba(304)/Hsp70Ba(304) genotype significantly increased among-individual variation quantified by coefficient of variation (CV) of bristle number and wing size in female, while the Df(3R)ED5579 heterozygote showed no significant effect. The expression level of Hsp70Ba in the deletion heterozygote was 6 to 20 times higher than in control homozygotes, suggesting that the overexpression of Hsp70Ba did not influence developmental stability or canalization significantly. These findings suggest that the absence of expression of Hsp70Ba increases CV of some morphological traits and that HSP70Ba may buffer against environmental perturbations on some quantitative traits.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/genética , Ambiente , Eliminación de Gen , Proteínas HSP70 de Choque Térmico/genética , Carácter Cuantitativo Heredable , Estrés Fisiológico/genética , Análisis de Varianza , Animales , Proteínas de Drosophila/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Genotipo , Proteínas HSP70 de Choque Térmico/metabolismo , Respuesta al Choque Térmico/genética , Larva/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Temperatura , Alas de Animales/anatomía & histología , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo
13.
Insect Biochem Mol Biol ; 41(7): 411-22, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21426939

RESUMEN

Identifying insecticide resistance mechanisms is paramount for pest insect control, as the understandings that underpin insect control strategies must provide ways of detecting and managing resistance. Insecticide resistance studies rely heavily on detailed biochemical and genetic analyses. Although there have been many successes, there are also many examples of resistance that still challenge us. As a precursor to rational pest insect control, the biology of the insect, within the contexts of insecticide modes of action and insecticide metabolism, must be well understood. It makes sense to initiate this research in the best model insect system, Drosophila melanogaster, and translate these findings and methodologies to other insects. Here we explore the usefulness of the D. melanogaster model in studying metabolic-based insecticide resistances, target-site mediated resistances and identifying novel insecticide targets, whilst highlighting the importance of having a more complete understanding of insect biology for insecticide studies.


Asunto(s)
Drosophila melanogaster/genética , Control de Insectos/métodos , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Proteómica/métodos , Anabasina/farmacología , Animales , Sitios de Unión , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , DDT/farmacología , Dieldrín/farmacología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efectos de los fármacos , Expresión Génica , Silenciador del Gen , Resistencia a los Insecticidas/efectos de los fármacos , Modelos Animales , Modelos Moleculares , Unión Proteica , Interferencia de ARN , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo
14.
Dev Biol ; 349(1): 35-45, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20932968

RESUMEN

Ecdysteroids are steroid hormones, which coordinate major developmental transitions in insects. Both the rises and falls in circulating levels of active hormones are important for coordinating molting and metamorphosis, making both ecdysteroid biosynthesis and inactivation of physiological relevance. We demonstrate that Drosophila melanogaster Cyp18a1 encodes a cytochrome P450 enzyme (CYP) with 26-hydroxylase activity, a prominent step in ecdysteroid catabolism. A clear ortholog of Cyp18a1 exists in most insects and crustaceans. When Cyp18a1 is transfected in Drosophila S2 cells, extensive conversion of 20-hydroxyecdysone (20E) into 20-hydroxyecdysonoic acid is observed. This is a multi-step process, which involves the formation of 20,26-dihydroxyecdysone as an intermediate. In Drosophila larvae, Cyp18a1 is expressed in many target tissues of 20E. We examined the consequences of Cyp18a1 inactivation on Drosophila development. Null alleles generated by excision of a P element and RNAi knockdown of Cyp18a1 both result in pupal lethality, possibly as a consequence of impaired ecdysteroid degradation. Our data suggest that the inactivation of 20E is essential for proper development and that CYP18A1 is a key enzyme in this process.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Drosophila melanogaster/crecimiento & desarrollo , Metamorfosis Biológica , Animales , Línea Celular , Sistema Enzimático del Citocromo P-450/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Ecdisterona/química , Ecdisterona/metabolismo , Activación Enzimática , Regulación del Desarrollo de la Expresión Génica , Humanos , Oxidación-Reducción , Filogenia , Interferencia de ARN
15.
Pest Manag Sci ; 66(10): 1106-15, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20583201

RESUMEN

BACKGROUND: Overexpression of the cytochrome P450 gene Cyp6g1 confers resistance against DDT and a broad range of other insecticides in Drosophila melanogaster Meig. In the absence of crystal structures of CYP6G1 or complexes with its substrates, structural studies rely on homology modelling and ligand docking to understand P450-substrate interactions. RESULTS: Homology models are presented for CYP6G1, a P450 associated with resistance to DDT and neonicotinoids, and two other enzymes associated with insecticide resistance in D. melanogaster, CYP12D1 and CYP6A2. The models are based on a template of the X-ray structure of the phylogenetically related human CYP3A4, which is known for its broad substrate specificity. The model of CYP6G1 has a much smaller active site cavity than the template. The cavity is also 'V'-shaped and is lined with hydrophobic residues, showing high shape and chemical complementarity with the molecular characteristics of DDT. Comparison of the DDT-CYP6G1 complex and a non-resistant CYP6A2 homology model implies that tight-fit recognition of this insecticide is important in CYP6G1. The active site can accommodate differently shaped substrates ranging from imidacloprid to malathion but not the pyrethroids permethrin and cyfluthrin. CONCLUSION: The CYP6G1, CYP12D1 and CYP6A2 homology models can provide a structural insight into insecticide resistance in flies overexpressing P450 enzymes with broad substrate specificities.


Asunto(s)
Sistema Enzimático del Citocromo P-450/química , Proteínas de Drosophila/química , Drosophila/enzimología , Resistencia a los Insecticidas , Animales , Dominio Catalítico , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Familia 6 del Citocromo P450 , DDT/metabolismo , DDT/farmacología , Drosophila/química , Drosophila/efectos de los fármacos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Humanos , Insecticidas/metabolismo , Insecticidas/farmacología , Modelos Moleculares , Conformación Molecular , Unión Proteica , Especificidad por Sustrato
16.
PLoS Genet ; 6(6): e1000998, 2010 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-20585622

RESUMEN

The increased transcription of the Cyp6g1 gene of Drosophila melanogaster, and consequent resistance to insecticides such as DDT, is a widely cited example of adaptation mediated by cis-regulatory change. A fragment of an Accord transposable element inserted upstream of the Cyp6g1 gene is causally associated with resistance and has spread to high frequencies in populations around the world since the 1940s. Here we report the existence of a natural allelic series at this locus of D. melanogaster, involving copy number variation of Cyp6g1, and two additional transposable element insertions (a P and an HMS-Beagle). We provide evidence that this genetic variation underpins phenotypic variation, as the more derived the allele, the greater the level of DDT resistance. Tracking the spatial and temporal patterns of allele frequency changes indicates that the multiple steps of the allelic series are adaptive. Further, a DDT association study shows that the most resistant allele, Cyp6g1-[BP], is greatly enriched in the top 5% of the phenotypic distribution and accounts for approximately 16% of the underlying phenotypic variation in resistance to DDT. In contrast, copy number variation for another candidate resistance gene, Cyp12d1, is not associated with resistance. Thus the Cyp6g1 locus is a major contributor to DDT resistance in field populations, and evolution at this locus features multiple adaptive steps occurring in rapid succession.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Variaciones en el Número de Copia de ADN , Elementos Transponibles de ADN , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Adaptación Biológica , Alelos , Animales , Animales Modificados Genéticamente , Sitios Genéticos , Transcripción Genética
17.
Proc Natl Acad Sci U S A ; 106(14): 5731-6, 2009 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-19289821

RESUMEN

Cytochrome P450s form a large and diverse family of heme-containing proteins capable of carrying out many different enzymatic reactions. In both mammals and plants, some P450s are known to carry out reactions essential for processes such as hormone synthesis, while other P450s are involved in the detoxification of environmental compounds. In general, functions of insect P450s are less well understood. We characterized Drosophila melanogaster P450 expression patterns in embryos and 2 stages of third instar larvae. We identified numerous P450s expressed in the fat body, Malpighian (renal) tubules, and in distinct regions of the midgut, consistent with hypothesized roles in detoxification processes, and other P450s expressed in organs such as the gonads, corpora allata, oenocytes, hindgut, and brain. Combining expression pattern data with an RNA interference lethality screen of individual P450s, we identify candidate P450s essential for developmental processes and distinguish them from P450s with potential functions in detoxification.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Drosophila melanogaster/genética , Animales , Proteínas de Drosophila/genética , Embrión no Mamífero/química , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Larva/química , Distribución Tisular
18.
Insect Biochem Mol Biol ; 37(10): 1044-53, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17785192

RESUMEN

The conserved relationship between orthologs of many cytochrome P450 genes involved in ecdysone synthesis is not reflected in the evolution of the Drosophila Cyp307a genes. In Drosophila melanogaster Cyp307a1 (spook) and Cyp307a2 (spookier) both play essential roles in ecdysone synthesis and may possess biochemically redundant functions. Using phylogenetic analyses we show that the Drosophila Cyp307a genes were formed from two independent duplication events depicting a complicated evolutionary scenario. An initial duplication, from a Cyp307a2 ancestral gene produced the Cyp307a1 gene that has been maintained only in the Sophophoran subgenus. A second duplication in the Drosophila subgenus formed an additional paralog, Cyp307a3. Microsynteny is conserved for Cyp307a2 throughout the Drosophila species, but is not conserved between Cyp307a1 and Cyp307a3. These are located in different genomic positions in the Sophophora and Drosophila subgenera, respectively. Cyp307a3 appears to encode a functional gene product and is expressed in a different spatial and temporal manner to Cyp307a1. This suggests some level of functional divergence between the Cyp307a paralogs in different Drosophila species.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Proteínas de Drosophila/genética , Drosophila/genética , Duplicación de Gen , Animales , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/fisiología , Drosophila/embriología , Drosophila/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/fisiología , Embrión no Mamífero/metabolismo , Evolución Molecular , Larva/metabolismo , Filogenia , Análisis de Secuencia de ADN , Especificidad de la Especie , Sintenía
19.
Pest Manag Sci ; 63(8): 803-8, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17514638

RESUMEN

Piperonyl butoxide (PBO) is an insecticide synergist known to inhibit the activity of cytochrome P450 enzymes. PBO is currently used in some insecticide formulations, and has also been suggested as a pretreatment for some pesticide applications. Little is known about how insects respond to PBO exposure at the gene transcription level. The authors have characterised the transcriptional response of the Drosophila melanogaster genome after PBO treatment, using both a custom-designed 'detox' microarray, containing cytochrome P450 (P450), glutathione S-transferase (GST) and esterase genes, and a full genome microarray. A subset of P450 and GST genes is identified, along with additional metabolic genes, that are induced by PBO. The gene set is an extremely similar gene set to that induced by phenobarbital, a compound for which pretreatment is known to confer tolerance to a range of insecticide compounds. The implications of the induction of gene families known to metabolise insecticides and the use of PBO in pest management programs are discussed.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Drosophila melanogaster/efectos de los fármacos , Glutatión Transferasa/metabolismo , Sinergistas de Plaguicidas/farmacología , Butóxido de Piperonilo/farmacología , Animales , Sistema Enzimático del Citocromo P-450/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Expresión Génica/efectos de los fármacos , Perfilación de la Expresión Génica , Genoma de los Insectos , Glutatión Transferasa/genética , Resistencia a los Insecticidas/genética , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos
20.
Insect Biochem Mol Biol ; 37(5): 512-9, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17456446

RESUMEN

In Drosophila melanogaster, the increased expression of Cyp6g1 results in resistance to chemically unrelated insecticides including DDT, neonicotinoids and insect growth regulator insecticides. To determine the insecticide resistance capacity of other D. melanogaster cytochrome P450s, we used the GAL4/UAS system to express individual P450s in the midgut, Malpighian tubules and fat body of transgenic flies. Drosophila over-expressing Cyp6g1, Cyp6g2, Cyp6t3, Cyp6a2, Cyp6a8, Cyp6a19, Cyp6a23 and Cyp12d1 were screened for resistance to four insecticides--DDT, nitenpyram, dicyclanil and diazinon. Increased survival on insecticides is detected for Cyp6g1 (DDT, nitenpyram and dicyclanil), Cyp6g2 (nitenpyram and diazinon) and Cyp12d1 (DDT and dicyclanil) over-expression lines. No increased survival on any insecticide was detected for flies over-expressing either Cyp6a2, Cyp6a8, Cyp6t3, Cyp6a19 or Cyp6a23.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Resistencia a los Insecticidas , Animales , Sistema Enzimático del Citocromo P-450/genética , Proteínas de Drosophila/genética , Resistencia a los Insecticidas/genética , Organismos Modificados Genéticamente/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA