Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Mol Biol ; 436(11): 168586, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38663544

RESUMEN

Stabilizing proteins without otherwise hampering their function is a central task in protein engineering and design. PYR1 is a plant hormone receptor that has been engineered to bind diverse small molecule ligands. We sought a set of generalized mutations that would provide stability without affecting functionality for PYR1 variants with diverse ligand-binding capabilities. To do this we used a global multi-mutant analysis (GMMA) approach, which can identify substitutions that have stabilizing effects and do not lower function. GMMA has the added benefit of finding substitutions that are stabilizing in different sequence contexts and we hypothesized that applying GMMA to PYR1 with different functionalities would identify this set of generalized mutations. Indeed, conducting FACS and deep sequencing of libraries for PYR1 variants with two different functionalities and applying a GMMA analysis identified 5 substitutions that, when inserted into four PYR1 variants that each bind a unique ligand, provided an increase of 2-6 °C in thermal inactivation temperature and no decrease in functionality.


Asunto(s)
Análisis Mutacional de ADN , Reguladores del Crecimiento de las Plantas , Proteínas de Plantas , Ingeniería de Proteínas , Estabilidad Proteica , Receptores de Superficie Celular , Sustitución de Aminoácidos/genética , Ligandos , Mutación , Unión Proteica , Ingeniería de Proteínas/métodos , Análisis Mutacional de ADN/métodos , Kluyveromyces , Reguladores del Crecimiento de las Plantas/química , Proteínas de Plantas/química , Proteínas de Plantas/genética , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , Ácido Abscísico/metabolismo
2.
J Mol Biol ; 436(3): 168370, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37992889

RESUMEN

PAS domains are ubiquitous in biology. They perform critically important roles in sensing and transducing a wide variety of environmental signals, and through their ability to bind small-molecule ligands, have emerged as targets for therapeutic intervention. Here, we discuss our current understanding of PAS domain structure and function in the context of basic helix-loop-helix (bHLH)-PAS transcription factors and coactivators. Unlike the bHLH-PAS domains of transcription factors, those of the steroid receptor coactivator (SRC) family are poorly characterized. Recent progress for this family and for the broader bHLH-PAS proteins suggest that these domains are ripe for deeper structural and functional studies.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Secuencias Hélice-Asa-Hélice , Receptores de Hidrocarburo de Aril , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Receptores de Hidrocarburo de Aril/química , Dominios Proteicos , Humanos
3.
Biotechnol Bioeng ; 121(1): 281-290, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37750676

RESUMEN

Protocols for the construction of large, deeply mutagenized protein encoding libraries via Golden Gate assembly of synthetic DNA cassettes employ disparate, system-specific methodology. Here we present a standardized Golden Gate method for building user-defined libraries. We demonstrate that a 25 µL reaction, using 40 fmol of input DNA, can generate a library on the order of 1 × 106 members and that reaction volume or input DNA concentration can be scaled up with no losses in transformation efficiency. Such libraries can be constructed from dsDNA cassettes generated either by degenerate oligonucleotides or oligo pools. We demonstrate its real-world effectiveness by building custom, user-defined libraries on the order of 104 -107 unique protein encoding variants for two orthogonal protein engineering systems. We include a detailed protocol and provide several general-use destination vectors.


Asunto(s)
ADN , Biología Sintética , Biología Sintética/métodos , ADN/metabolismo , Ingeniería de Proteínas , Biblioteca de Genes , Mutagénesis , Vectores Genéticos , Clonación Molecular
4.
bioRxiv ; 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37502902

RESUMEN

Steroid receptor coactivators (SRCs) comprise a family of three paralogous proteins commonly recruited by eukaryotic transcription factors. Each SRC harbors two tandem Per-ARNT-Sim (PAS) domains that are broadly distributed that bind small molecules and regulate interactions. Using computational docking, solution NMR, mass spectrometry, and molecular dynamics simulations, we show that the SRC1 PAS-B domain can bind to certain prostaglandins (PGs) either non-covalently to a surface that overlaps with the site used to engage transcription factors or covalently to a single, specific, conserved cysteine residue next to a solvent accessible hydrophobic pocket. This pocket is in proximity to the canonical transcription factor binding site, but on the opposite side of the domain, suggesting a potential mode of regulating transcriptional activator-coactivator interactions.

5.
J Mol Biol ; 434(16): 167718, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35810793

RESUMEN

Nuclear receptors constitute one of the largest families of transcription factors that regulate genes in metazoans in response to small molecule ligands. Many receptors harbor two transactivation domains, one at each end of the protein sequence. Whereas the molecular mechanisms of transactivation mediated by the ligand-binding domain at the C-terminus of the protein are generally well established, the mechanism involving the N-terminal domain called activation function 1 (AF1) has remained elusive. Previous studies implicated the AF1 domain as a significant contributor towards the overall transcriptional activity of the NR4A family of nuclear receptors and suggested that the steroid receptor coactivators (SRCs) play an important role in this process. Here we show that a short segment within the AF1 domain of the NR4A receptor Nurr1 can directly engage with the SRC1 PAS-B domain. We also show that this segment forms a helix upon binding to a largely hydrophobic groove on PAS-B, overlapping with the surface engaged by the STAT6 transcription factor, suggesting that this mode of recruitment could be shared by diverse transcription factors including other nuclear receptors.


Asunto(s)
Coactivador 1 de Receptor Nuclear , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Activación Transcripcional , Secuencia de Aminoácidos , Coactivador 1 de Receptor Nuclear/química , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/química , Unión Proteica , Dominios Proteicos , Factor de Transcripción STAT6/química
6.
J Biol Chem ; 298(2): 101558, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34979096

RESUMEN

Chromatin-modifying complexes containing histone deacetylase (HDAC) activities play critical roles in the regulation of gene transcription in eukaryotes. These complexes are thought to lack intrinsic DNA-binding activity, but according to a well-established paradigm, they are recruited via protein-protein interactions by gene-specific transcription factors and posttranslational histone modifications to their sites of action on the genome. The mammalian Sin3L/Rpd3L complex, comprising more than a dozen different polypeptides, is an ancient HDAC complex found in diverse eukaryotes. The subunits of this complex harbor conserved domains and motifs of unknown structure and function. Here, we show that Sds3, a constitutively-associated subunit critical for the proper functioning of the Sin3L/Rpd3L complex, harbors a type of Tudor domain that we designate the capped Tudor domain. Unlike canonical Tudor domains that bind modified histones, the Sds3 capped Tudor domain binds to nucleic acids that can form higher-order structures such as G-quadruplexes and shares similarities with the knotted Tudor domain of the Esa1 histone acetyltransferase that was previously shown to bind single-stranded RNA. Our findings expand the range of macromolecules capable of recruiting the Sin3L/Rpd3L complex and draw attention to potentially new biological roles for this HDAC complex.


Asunto(s)
G-Cuádruplex , Histona Desacetilasas , Complejo Correpresor Histona Desacetilasa y Sin3 , Secuencia de Aminoácidos , Animales , Histona Desacetilasas/metabolismo , Mamíferos , Unión Proteica , Complejo Correpresor Histona Desacetilasa y Sin3/metabolismo , Factores de Transcripción/metabolismo , Dominio Tudor
7.
Biophysicist (Rockv) ; 3(1): 13-34, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36687382

RESUMEN

Chemical exchange line-broadening is an important phenomenon in nuclear magnetic resonance (NMR) spectroscopy, in which a nuclear spin experiences more than one magnetic environment as a result of chemical or conformational changes of a molecule. The dynamic process of chemical exchange strongly affects the sensitivity and resolution of NMR experiments, and increasingly provides a powerful probe of the inter-conversion between chemical and conformational states of proteins, nucleic acids, and other biological macromolecules. A simple and often used theoretical description of chemical exchange in NMR spectroscopy is based on an idealized two-state jump model (the random-phase or telegraph signal). However, chemical exchange can also be represented as a barrier-crossing event that can be modeled using chemical reaction rate theory. The time scale of crossing is determined by the barrier height, the temperature, and the dissipation modeled as collisional or frictional damping. This tutorial explores the connection between the NMR theory of chemical exchange line-broadening and strong-collision models for chemical kinetics in statistical mechanics. Theoretical modeling and numerical simulation are used to map the rate of barrier-crossing dynamics of a particle on a potential energy surface to the chemical exchange relaxation rate constant. By developing explicit models for the exchange dynamics, the tutorial aims to elucidate the underlying dynamical processes that give rise to the rich phenomenology of chemical exchange observed in NMR spectroscopy. Software for generating and analyzing the numerical simulations is provided in the form of Python and Fortran source codes.

8.
Biochemistry ; 57(13): 1977-1986, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29547262

RESUMEN

The ligand-binding domains (LBDs) of the NR5A subfamily of nuclear receptors activate transcription via ligand-dependent and ligand-independent mechanisms. The Drosophila Ftz-F1 receptor (NR5A3) belongs to the latter category, and its ligand independence is attributed to a short helical segment (α6) within the protein that resides in the canonical ligand-binding pocket (LBP) in the crystalline state. Here, we show that the α6 helix is dynamic in solution when Ftz-F1 is bound to the LxxLL motif of its cofactor Ftz, undergoing motions on the fast (picosecond to nanosecond) as well as slow (microsecond to millisecond) time scales. Motions on the slow time scale (∼10-3 s) appear to pervade throughout the domain, most prominently in the LBP and residues at or near the cofactor-binding site. We ascribe the fast time scale motions to a solvent-accessible conformation for the α6 helix akin to those described for its orthologs in higher organisms. We assign this conformation where the LBP is "open" to a lowly populated species, while the major conformer bears the properties of the crystal structure where the LBP is "closed". We propose that these conformational transitions could allow binding to small molecule ligands and/or play a role in dissociation of the cofactor from the binding site. Indeed, we show that the Ftz-F1 LBD can bind phospholipids, not unlike its orthologs. Our studies provide the first detailed insights into intrinsic motions occurring on a variety of time scales in a nuclear receptor LBD and reveal that potentially functionally significant motions pervade throughout the domain in solution, despite evidence to the contrary implied by the crystal structure.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Drosophila/química , Simulación de Dinámica Molecular , Factores de Transcripción/química , Animales , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Movimiento (Física) , Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos , Estructura Secundaria de Proteína , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA