Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; 12(17): e2202750, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36863404

RESUMEN

The temporospatial equilibrium of phosphate contributes to physiological bone development and fracture healing, yet optimal control of phosphate content has not been explored in skeletal regenerative materials. Nanoparticulate mineralized collagen glycosaminoglycan (MC-GAG) is a synthetic, tunable material that promotes in vivo skull regeneration. In this work, the effects of MC-GAG phosphate content on the surrounding microenvironment and osteoprogenitor differentiation are investigated. This study finds that MC-GAG exhibits a temporal relationship with soluble phosphate with elution early in culture shifting to absorption with or without differentiating primary bone marrow-derived human mesenchymal stem cells (hMSCs). The intrinsic phosphate content of MC-GAG is sufficient to stimulate osteogenic differentiation of hMSCs in basal growth media without the addition of exogenous phosphate in a manner that can be severely reduced, but not eliminated, by knockdown of the sodium phosphate transporters PiT-1 or PiT-2. The contributions of PiT-1 and PiT-2 to MC-GAG-mediated osteogenesis are nonredundant but also nonadditive, suggestive that the heterodimeric form is essential to its activity. These findings indicate that the mineral content of MC-GAG alters phosphate concentrations within a local microenvironment resulting in osteogenic differentiation of progenitor cells via both PiT-1 and PiT-2.


Asunto(s)
Osteogénesis , Fosfatos , Humanos , Fosfatos/farmacología , Andamios del Tejido , Colágeno , Diferenciación Celular , Glicosaminoglicanos , Células Cultivadas
2.
Biomater Adv ; 145: 213262, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36565669

RESUMEN

Custom synthesis of extracellular matrix (ECM)-inspired materials for condition-specific reconstruction has emerged as a potentially translatable regenerative strategy. In skull defect reconstruction, nanoparticulate mineralized collagen glycosaminoglycan scaffolds (MC-GAG) have demonstrated osteogenic and anti-osteoclastogenic properties, culminating in the ability to partially heal in vivo skull defects without the addition of exogenous growth factors or progenitor cell loading. In an effort to reduce catabolism during early skull regeneration, we fabricated a composite material (MCGO) of MC-GAG and recombinant osteoprotegerin (OPG), an endogenous anti-osteoclastogenic decoy receptor. In the presence of differentiating osteoprogenitors, MCGO demonstrated an additive effect with endogenous OPG limited to the first 14 days of culture with total eluted and scaffold-bound OPG exceeding that of MC-GAG. Functionally, MCGO exhibited similar osteogenic properties as MC-GAG, however, MCGO significantly reduced maturation and resorptive activities of primary human osteoclasts. In a rabbit skull defect model, MCGO scaffold-reconstructed defects displayed higher mineralization as well as increased hardness and microfracture resistance compared to non-OPG functionalized MC-GAG scaffolds. The current work suggests that MCGO is a development in the goal of reaching a materials-based strategy for skull regeneration.


Asunto(s)
Células Madre Mesenquimatosas , Osteoprotegerina , Animales , Humanos , Conejos , Osteoprotegerina/metabolismo , Andamios del Tejido , Células Madre Mesenquimatosas/metabolismo , Colágeno/farmacología , Cráneo/cirugía , Cráneo/metabolismo , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA