RESUMEN
Processing of RNA is a key regulatory mechanism for all living systems. Escherichia coli protein YicC belongs to the well-conserved YicC family and has been identified as a novel ribonuclease. Here, we report a 2.8-Å-resolution crystal structure of the E. coli YicC apo protein and a 3.2-Å-cryo-EM structure of YicC bound to an RNA substrate. The apo YicC forms a dimer of trimers with a large open channel. In the RNA-bound form, the top trimer of YicC rotates nearly 70° and closes the RNA substrate inside the cavity to form a clamshell-pearl conformation that resembles no other known RNases. The structural information combined with mass spectrometry and biochemical data identified cleavage on the upstream side of an RNA hairpin. Mutagenesis studies demonstrated that the previously uncharacterized domain, DUF1732, is critical in both RNA binding and catalysis. These studies shed light on the mechanism of the previously unexplored YicC RNase family.
Asunto(s)
Proteínas de Escherichia coli , Modelos Moleculares , División del ARN , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/enzimología , Ribonucleasas/metabolismo , Ribonucleasas/química , Ribonucleasas/genética , Cristalografía por Rayos X , ARN/metabolismo , ARN/química , Unión Proteica , Conformación de Ácido Nucleico , Conformación Proteica , ARN Bacteriano/metabolismo , ARN Bacteriano/químicaRESUMEN
Processing of RNA is a key regulatory mechanism for all living systems. We recently discovered a novel family of endoribonucleases that is conserved across all bacteria. Here, using crystallography, cryo-EM microscopy, biochemical, biophysical, and mass spectrometry techniques, we are able to shed light on a novel RNA cleavage mechanism in bacteria. We show that YicC, the prototypical member of this family, forms a hexameric channel that closes down on a 26-mer RNA substrate, and find that it cleaves across an RNA hairpin to generate several short fragments.
RESUMEN
Protein-interaction domains can create unique macromolecular complexes that drive evolutionary innovation. By combining bioinformatic and phylogenetic analyses with structural approaches, we have discovered that the docking and dimerization (D/D) domain of the PKA regulatory subunit is an ancient and conserved protein fold. An archetypal function of this module is to interact with A-kinase-anchoring proteins (AKAPs) that facilitate compartmentalization of this key cell-signaling enzyme. Homology searching reveals that D/D domain proteins comprise a superfamily with 18 members that function in a variety of molecular and cellular contexts. Further in silico analyses indicate that D/D domains segregate into subgroups on the basis of their similarity to type I or type II PKA regulatory subunits. The sperm autoantigenic protein 17 (SPA17) is a prototype of the type II or R2D2 subgroup that is conserved across metazoan phyla. We determined the crystal structure of an extended D/D domain from SPA17 (amino acids 1-75) at 1.72 Å resolution. This revealed a four-helix bundle-like configuration featuring terminal ß-strands that can mediate higher order oligomerization. In solution, SPA17 forms both homodimers and tetramers and displays a weak affinity for AKAP18. Quantitative approaches reveal that AKAP18 binding occurs at nanomolar affinity when SPA17 heterodimerizes with the ropporin-1-like D/D protein. These findings expand the role of the D/D fold as a versatile protein-interaction element that maintains the integrity of macromolecular architectures within organelles such as motile cilia.
Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Evolución Molecular , Simulación del Acoplamiento Molecular , Multimerización de Proteína , Secuencia de Aminoácidos , Filogenia , Dominios Proteicos , Alineación de Secuencia , Transducción de SeñalRESUMEN
We investigated the genome of a 5-year-old male who presented with global developmental delay (motor, cognitive, and speech), hypotonia, possibly ataxia, and cerebellar hypoplasia of unknown origin. Whole genome sequencing (WGS) and mRNA sequencing (RNA-seq) were performed on a family having an affected proband, his unaffected parents, and maternal grandfather. To explore the molecular and functional consequences of the variant, we performed cell proliferation assays, quantitative real-time PCR (qRT-PCR) array, immunoblotting, calcium imaging, and neurite outgrowth experiments in SH-SY5Y neuroblastoma cells to compare the properties of the wild-type TATA-box-binding protein factor 1 (TAF1), deletion of TAF1, and TAF1 variant p.Ser1600Gly samples. The whole genome data identified several gene variants. However, the genome sequence data failed to implicate a candidate gene as many of the variants were of unknown significance. By combining genome sequence data with transcriptomic data, a probable candidate variant, p.Ser1600Gly, emerged in TAF1. Moreover, the RNA-seq data revealed a 90:10 extremely skewed X-chromosome inactivation (XCI) in the mother. Our results showed that neuronal ion channel genes were differentially expressed between TAF1 deletion and TAF1 variant p.Ser1600Gly cells, when compared with their respective controls, and that the TAF1 variant may impair neuronal differentiation and cell proliferation. Taken together, our data suggest that this novel variant in TAF1 plays a key role in the development of a recently described X-linked syndrome, TAF1 intellectual disability syndrome, and further extends our knowledge of a potential link between TAF1 deficiency and defects in neuronal cell function.