Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Adv Sci (Weinh) ; : e2407177, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39352299

RESUMEN

The global energy system transforming from fossil fuels to renewable green energy through the adaption of innovative and dynamic green technologies. Energy-saving buildings (ESBs) are attracting extensive attention as intelligent architectures capable of significantly reducing the energy consumption for heating, air-conditioning, and lighting. They provide comfortable working and living environment by regulating and harnessing solar energy. Smart photovoltaic windows (SPWs) offer a promising platform for designing ESBs due to their unique feature. They can modulate solar energy based on dynamic color switching behavior under external stimuli and generate electrical power by harvesting solar energy. In this review, the-state-of-art of strategies and technologies are summarized putting SPWs toward high-efficiency ESBs. The SPWs are systematically categorized according to the working principle and functional component. For each type of SPWs, material and architecture engineering are focused on to optimize operation mode, optical modulation capability, photovoltaic performance and durability for giving ESBs flexible manipulation, extraordinary energy-saving effect, and high electricity power. In addition, the challenges and opportunities in this cutting-edge research area are discussed, with the aim of promoting the development of advanced multifunctional SPWs and their application in high efficiency ESBs.

2.
Nanoscale ; 16(36): 17042-17048, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39189350

RESUMEN

The top surface of the perovskite layer and the interface with the electron transporting layer play a key role in influencing the performance and operational stability of inverted perovskite solar cells (PSCs). A deficient or ineffective surface passivation strategy at the perovskite/electron transport layer interface can significantly impact the efficiency and scalability of PSCs. This study introduces phenyl dimethylammonium iodide (PDMAI2) as a passivation ligand that exhibits improved chemical and field-effect passivation at the perovskite/C60 interface. It was found that PDMAI2 not only passivates surface defects and suppresses recombination through robust coordination but also repels minority carriers and reduces contact-induced interface recombination. The approach leads to a twofold reduction in defect densities and photoluminescence quantum yield loss. This approach enabled high power conversion efficiencies (PCEs) of 25.3% for small-area (0.1 cm2) and 23.8% for large-area (1 cm2) inverted PSCs. Additionally, PDMAI2 passivation enabled PSCs to demonstrate steady operation at 65 °C for >1200 hours in an ambient environment.

3.
Adv Mater ; 36(28): e2310619, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38718249

RESUMEN

The orthogonal structure of the widely used hole transporting material (HTM) 2,2',7,7'-tetrakis(N, N-di-p-methoxyphenylamino)-9,9'-spirobifluorene (Spiro-OMeTAD) imparts isotropic conductivity and excellent film-forming capability. However, inherently weak intra- and inter-molecular π-π interactions result in low intrinsic hole mobility. Herein, a novel HTM, termed FTPE-ST, with a twist conjugated dibenzo(g,p)chrysene core and coplanar 3,4-ethylenedioxythiophene (EDOT) as extended donor units, is designed to enhance π-π interactions, without compromising on solubility. The three-dimensional (3D) configuration provides the material multi-direction charge transport as well as excellent solubility even in 2-methylanisole, and its large conjugated backbone endows the HTM with a high hole mobility. Moreover, the sulfur donors in EDOT units coordinate with lead ions on the perovskite surface, leading to stronger interfacial interactions and the suppression of defects at the perovskite/HTM interface. As a result, perovskite solar cells (PSCs) employing FTPE-ST achieve a champion power conversion efficiency (PCE) of 25.21% with excellent long-time stability, one of the highest PCEs for non-spiro HTMs in n-i-p PSCs. In addition, the excellent film-forming capacity of the HTM enables the fabrication of FTPE-ST-based large-scale PSCs (1.0 cm2) and modules (29.0 cm2), which achieve PCEs of 24.21% (certificated 24.17%) and 21.27%, respectively.

4.
Small ; 20(37): e2401831, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38733226

RESUMEN

Quasi-2D perovskites have attracted much attention in perovskite photovoltaics due to their excellent stability. However, their photoelectric conversion efficiency (PCE) still lags 3D counterparts, particularly with high short-circuit current (JSC) loss. The quantum confinement effect is pointed out to be the sole reason, which introduces widened bandgap and poor exciton dissociation, and undermines the light capture and charge transport. Here, the gradient incorporation of formamidinium (FA) cations into quasi-2D perovskite is proposed to address this issue. It is observed that FA prefers to incorporate into the larger n value phases near the film surface compared to the smaller n value phases in the bulk, resulting in a narrow bandgap and gradient structure within the film. Through charge dynamic analysis using in situ light-dark Kelvin probe force microscopy and transient absorption spectroscopy, it is demonstrated that incorporating 10% FA significantly facilitates efficient charge transfer between low n-value phases in the bulk and high n-value nearby film surface, leading to reduced charge accumulation. Ultimately, the device based on (AA)2(MA0.9FA0.1)4Pb5I16, where AA represents n-amylamine renowned for its exceptional environmental stability as a bulky organic ligand, achieves an impressive power conversion efficiency (PCE) of 18.58% and demonstrates enhanced illumination and thermal stability.

5.
Front Cardiovasc Med ; 11: 1369343, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650918

RESUMEN

Cardiovascular disease stands as a leading global cause of mortality. Nucleotide-binding Oligomerization Domain-like Receptor Protein 3 (NLRP3) inflammasome is widely acknowledged as pivotal factor in specific cardiovascular disease progression, such as myocardial infarction, heart failure. Recent investigations underscore a close interconnection between autonomic nervous system (ANS) dysfunction and cardiac inflammation. It has been substantiated that sympathetic nervous system activation and vagus nerve stimulation (VNS) assumes critical roles withinNLRP3 inflammasome pathway regulation, thereby contributing to the amelioration of cardiac injury and enhancement of prognosis in heart diseases. This article reviews the nexus between NLRP3 inflammasome and cardiovascular disorders, elucidating the modulatory functions of the sympathetic and vagus nerves within the ANS with regard to NLRP3 inflammasome. Furthermore, it delves into the potential therapeutic utility of NLRP3 inflammasome to be targeted by VNS. This review serves as a valuable reference for further exploration into the potential mechanisms underlying VNS in the modulation of NLRP3 inflammasome.

6.
ACS Appl Mater Interfaces ; 16(17): 22079-22088, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38641564

RESUMEN

In perovskite solar cells (PSCs), defects in the interface and mismatched energy levels can damage the device performance. Improving the interface quality is an effective way to achieve efficient and stable PSCs. In this work, a multifunctional dye molecule, named ThPCyAc, was designed and synthesized to be introduced in the perovskite/HTM interface. On one hand, various functional groups on the acceptor unit can act as Lewis base to reduce defect density and suppress nonradiative combinations. On the other hand, the stepwise energy-level alignment caused by ThPCyAc decreases the accumulation of interface carriers for facilitating charge extraction and transmission. Therefore, based on the ThPCyAc molecule, the devices exhibit elevated open-circuit voltage and fill factor, resulting in the best power conversion efficiency (PCE) of 23.16%, outperforming the control sample lacking the interface layer (PCE = 21.49%). Excitingly, when attempting to apply it as a self-assembled layer in inverted devices, ThPCyAc still exhibits attractive behavior. It is worth noting that these results indicate that dye molecules have great potential in developing multifunctional interface materials to obtain higher-performance PSCs.

7.
Angew Chem Int Ed Engl ; 63(18): e202320152, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38437457

RESUMEN

Dopant-free hole transporting materials (HTMs) is significant to the stability of perovskite solar cells (PSCs). Here, we developed a novel star-shape arylamine HTM, termed Py-DB, with a pyrene core and carbon-carbon double bonds as the bridge units. Compared to the reference HTM (termed Py-C), the extension of the planar conjugation backbone endows Py-DB with typical intermolecular π-π stacking interactions and excellent solubility, resulting in improved hole mobility and film morphology. In addition, the lower HOMO energy level of the Py-DB HTM provides efficient hole extraction with reduced energy loss at the perovskite/HTM interface. Consequently, an impressive power conversion efficiency (PCE) of 24.33 % was achieved for dopant-free Py-DB-based PSCs, which is the highest PCE for dopant-free small molecular HTMs in n-i-p configured PSCs. The dopant-free Py-DB-based device also exhibits improved long-term stability, retaining over 90 % of its initial efficiency after 1000 h exposure to 25 % humidity at 60 °C. These findings provide valuable insights and approaches for the further development of dopant-free HTMs for efficient and reliable PSCs.

8.
Nature ; 628(8007): 299-305, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38438066

RESUMEN

Perovskite solar cells (PSCs) are among the most promising photovoltaic technologies owing to their exceptional optoelectronic properties1,2. However, the lower efficiency, poor stability and reproducibility issues of large-area PSCs compared with laboratory-scale PSCs are notable drawbacks that hinder their commercialization3. Here we report a synergistic dopant-additive combination strategy using methylammonium chloride (MACl) as the dopant and a Lewis-basic ionic-liquid additive, 1,3-bis(cyanomethyl)imidazolium chloride ([Bcmim]Cl). This strategy effectively inhibits the degradation of the perovskite precursor solution (PPS), suppresses the aggregation of MACl and results in phase-homogeneous and stable perovskite films with high crystallinity and fewer defects. This approach enabled the fabrication of perovskite solar modules (PSMs) that achieved a certified efficiency of 23.30% and ultimately stabilized at 22.97% over a 27.22-cm2 aperture area, marking the highest certified PSM performance. Furthermore, the PSMs showed long-term operational stability, maintaining 94.66% of the initial efficiency after 1,000 h under continuous one-sun illumination at room temperature. The interaction between [Bcmim]Cl and MACl was extensively studied to unravel the mechanism leading to an enhancement of device properties. Our approach holds substantial promise for bridging the benchtop-to-rooftop gap and advancing the production and commercialization of large-area perovskite photovoltaics.

9.
Nature ; 624(7992): 557-563, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37913815

RESUMEN

Perovskite solar cells with the formula FA1-xCsxPbI3, where FA is formamidinium, provide an attractive option for integrating high efficiency, durable stability and compatibility with scaled-up fabrication. Despite the incorporation of Cs cations, which could potentially enable a perfect perovskite lattice1,2, the compositional inhomogeneity caused by A-site cation segregation is likely to be detrimental to the photovoltaic performance of the solar cells3,4. Here we visualized the out-of-plane compositional inhomogeneity along the vertical direction across perovskite films and identified the underlying reasons for the inhomogeneity and its potential impact for devices. We devised a strategy using 1-(phenylsulfonyl)pyrrole to homogenize the distribution of cation composition in perovskite films. The resultant p-i-n devices yielded a certified steady-state photon-to-electron conversion efficiency of 25.2% and durable stability.

10.
Angew Chem Int Ed Engl ; 62(29): e202304350, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37184396

RESUMEN

Hole transport materials (HTMs) are a key component of perovskite solar cells (PSCs). The small molecular 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenyl)-amine-9,9'-spirobifluorene (spiro-OMeTAD, termed "Spiro") is the most successful HTM used in PSCs, but its versatility is imperfect. To improve its performance, we developed a novel spiro-type HTM (termed "DP") by substituting four anisole units on Spiro with 4-methoxybiphenyl moieties. By extending the π-conjugation of Spiro in this way, the HOMO level of the HTM matches well with the perovskite valence band, enhancing hole mobility and increasing the glass transition temperature. DP-based PSC achieves high power conversion efficiencies (PCEs) of 25.24 % for small-area (0.06 cm2 ) devices and 21.86 % for modules (designated area of 27.56 cm2 ), along with the certified efficiency of 21.78 % on a designated area of 27.86 cm2 . The encapsulated DP-based devices maintain 95.1 % of the initial performance under ISOS-L-1 conditions after 2560 hours and 87 % at the ISOS-L-3 conditions over 600 hours.

11.
Sci Adv ; 9(21): eadg0087, 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37235654

RESUMEN

All-inorganic CsPbI3 perovskite solar cells (PSCs) with efficiencies exceeding 20% are ideal candidates for application in large-scale tandem solar cells. However, there are still two major obstacles hindering their scale-up: (i) the inhomogeneous solid-state synthesis process and (ii) the inferior stability of the photoactive CsPbI3 black phase. Here, we have used a thermally stable ionic liquid, bis(triphenylphosphine)iminium bis(trifluoromethylsulfonyl)imide ([PPN][TFSI]), to retard the high-temperature solid-state reaction between Cs4PbI6 and DMAPbI3 [dimethylammonium (DMA)], which enables the preparation of high-quality and large-area CsPbI3 films in the air. Because of the strong Pb-O contacts, [PPN][TFSI] increases the formation energy of superficial vacancies and prevents the undesired phase degradation of CsPbI3. The resulting PSCs attained a power conversion efficiency (PCE) of 20.64% (certified 19.69%) with long-term operational stability over 1000 hours. A record efficiency of 16.89% for an all-inorganic perovskite solar module was achieved, with an active area of 28.17 cm2.

12.
Nanomicro Lett ; 15(1): 138, 2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37245182

RESUMEN

Perovskite crystal facets greatly impact the performance and stability of their corresponding photovoltaic devices. Compared to the (001) facet, the (011) facet yields better photoelectric properties, including higher conductivity and enhanced charge carrier mobility. Thus, achieving (011) facet-exposed films is a promising way to improve device performance. However, the growth of (011) facets is energetically unfavorable in FAPbI3 perovskites due to the influence of methylammonium chloride additive. Here, 1-butyl-4-methylpyridinium chloride ([4MBP]Cl) was used to expose (011) facets. The [4MBP]+ cation selectively decreases the surface energy of the (011) facet enabling the growth of the (011) plane. The [4MBP]+ cation causes the perovskite nuclei to rotate by 45° such that (011) crystal facets stack along the out-of-plane direction. The (011) facet has excellent charge transport properties and can achieve better-matched energy level alignment. In addition, [4MBP]Cl increases the activation energy barrier for ion migration, suppressing decomposition of the perovskite. As a result, a small-size device (0.06 cm2) and a module (29.0 cm2) based on exposure of the (011) facet achieved power conversion efficiencies of 25.24% and 21.12%, respectively.

13.
ChemSusChem ; 15(20): e202201485, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36036864

RESUMEN

The development of stable and efficient hole-transporting materials (HTMs) is critical for the commercialization of perovskite solar cells (PSCs). Herein, a novel spiro-type HTM was designed and synthesized where N-ethylcarbazole-terminated groups fully substituted the methoxy group of spiro-OMeTAD, named spiro-carbazole. The developed molecule exhibited a lower highest occupied molecular orbital level, higher hole mobility, and extremely high glass transition temperature (Tg =196 °C) compared with spiro-OMeTAD. PSCs with the developed molecule exhibited a champion power conversion efficiency (PCE) of 22.01 %, which surpassed traditional spiro-OMeTAD (21.12 %). Importantly, the spiro-carbazole-based device had dramatically better thermal, humid, and long-term stability than spiro-OMeTAD.

14.
Nat Nanotechnol ; 17(6): 598-605, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35449409

RESUMEN

Despite the remarkable progress in power conversion efficiency of perovskite solar cells, going from individual small-size devices into large-area modules while preserving their commercial competitiveness compared with other thin-film solar cells remains a challenge. Major obstacles include reduction of both the resistive losses and intrinsic defects in the electron transport layers and the reliable fabrication of high-quality large-area perovskite films. Here we report a facile solvothermal method to synthesize single-crystalline TiO2 rhombohedral nanoparticles with exposed (001) facets. Owing to their low lattice mismatch and high affinity with the perovskite absorber, their high electron mobility and their lower density of defects, single-crystalline TiO2 nanoparticle-based small-size devices achieve an efficiency of 24.05% and a fill factor of 84.7%. The devices maintain about 90% of their initial performance after continuous operation for 1,400 h. We have fabricated large-area modules and obtained a certified efficiency of 22.72% with an active area of nearly 24 cm2, which represents the highest-efficiency modules with the lowest loss in efficiency when scaling up.

15.
Nat Commun ; 12(1): 6394, 2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34737288

RESUMEN

Organic halide salt passivation is considered to be an essential strategy to reduce defects in state-of-the-art perovskite solar cells (PSCs). This strategy, however, suffers from the inevitable formation of in-plane favored two-dimensional (2D) perovskite layers with impaired charge transport, especially under thermal conditions, impeding photovoltaic performance and device scale-up. To overcome this limitation, we studied the energy barrier of 2D perovskite formation from ortho-, meta- and para-isomers of (phenylene)di(ethylammonium) iodide (PDEAI2) that were designed for tailored defect passivation. Treatment with the most sterically hindered ortho-isomer not only prevents the formation of surficial 2D perovskite film, even at elevated temperatures, but also maximizes the passivation effect on both shallow- and deep-level defects. The ensuing PSCs achieve an efficiency of 23.9% with long-term operational stability (over 1000 h). Importantly, a record efficiency of 21.4% for the perovskite module with an active area of 26 cm2 was achieved.

16.
Angew Chem Int Ed Engl ; 60(37): 20489-20497, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34223674

RESUMEN

The emerging CsPbI3 perovskites are highly efficient and thermally stable materials for wide-band gap perovskite solar cells (PSCs), but the doped hole transport materials (HTMs) accelerate the undesirable phase transition of CsPbI3 in ambient. Herein, a dopant-free D-π-A type HTM named CI-TTIN-2F has been developed which overcomes this problem. The suitable optoelectronic properties and energy-level alignment endow CI-TTIN-2F with excellent charge collection properties. Moreover, CI-TTIN-2F provides multisite defect-healing effects on the defective sites of CsPbI3 surface. Inorganic CsPbI3 PSCs with CI-TTIN-2F HTM feature high efficiencies up to 15.9 %, along with 86 % efficiency retention after 1000 h under ambient conditions. Inorganic perovskite solar modules were also fabricated that exhibiting an efficiency of 11.0 % with a record area of 27 cm2 . This work confirms that using efficient dopant-free HTMs is an attractive strategy to stabilize inorganic PSCs for their future scale-up.

17.
Nanomicro Lett ; 13(1): 152, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34232444

RESUMEN

Perovskite solar cells (PSCs) emerging as a promising photovoltaic technology with high efficiency and low manufacturing cost have attracted the attention from all over the world. Both the efficiency and stability of PSCs have increased steadily in recent years, and the research on reducing lead leakage and developing eco-friendly lead-free perovskites pushes forward the commercialization of PSCs step by step. This review summarizes the main progress of PSCs in 2020 and 2021 from the aspects of efficiency, stability, perovskite-based tandem devices, and lead-free PSCs. Moreover, a brief discussion on the development of PSC modules and its challenges toward practical application is provided.

18.
ACS Appl Mater Interfaces ; 13(10): 12322-12330, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33683113

RESUMEN

A series of hole transporting materials (HTMs) with fused tetraphenylethylene cores (9,9'-bifluorenylidene and dibenzo[g,p]chrysene) as well as different substitution positions of arylamine side arms has been designed and synthesized. A reference HTM with a non-fused tetraphenylethylene core is also prepared for a comparative study. It is noted that fused tetraphenylethylene molecules show a bathochromic spectral shift, electronegative character, and lower reorganization energies than the non-fused ones. Furthermore, the molecules with side arms located on the meta-position on the tetraphenylethylene core in terms of a double bond exhibit a deeper highest occupied molecular orbital level than those of the para-position-based ones whether tetraphenylethylene is fused or not. Moreover, the reorganization energies of fused meta-position-based HTMs are lower than those of para-position-based HTMs. Fused tetraphenylethylene HTMs own a better hole-extraction capability than the non-fused ones. When used in perovskite solar cells, all devices with fused tetraphenylethylene HTMs display better performance than those of the non-fused ones. The HTMs based on dibenzo[g,p]chrysene exhibit better performance than those of bifluorenylidene. Moreover, the devices with HTMs with side arms located on the meta-position on the tetraphenylethylene core display higher power conversion efficiency than those of the para-position-based ones. The results give some new insight and reference to develop ideal HTMs for perovskite solar cells.

19.
Chem Commun (Camb) ; 56(92): 14471-14474, 2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33150338

RESUMEN

The developed ammonium salt-containing hole transporting material could passivate perovskite defects and transport holes, and exhibits better performance compared with the non-ammonium salt counterpart.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA