Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Adv Mater ; : e2404784, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38958110

RESUMEN

Hepatocellular carcinoma (HCC) is the most frequent type of primary liver cancer and the third leading cause for cancer-related death worldwide. The tumor is difficult-to-treat due to its inherent resistance to chemotherapy. Antistromal therapy is a novel therapeutic approach, targeting cancer-associated fibroblasts (CAF) in the tumor microenvironment. CAF-derived microfibrillar-associated protein 5 (MFAP-5) is identified as a novel target for antistromal therapy of HCC with high translational relevance. Biocompatible polypept(o)ide-based polyion complex micelles (PICMs) constructed with a triblock copolymer composed of a cationic poly(l-lysine) complexing anti-MFAP-5 siRNA (siMFAP-5) via electrostatic interaction, a poly(γ-benzyl-l-glutamate) block loading cationic amphiphilic drug desloratatine (DES) via π-π interaction as endosomal escape enhancer and polysarcosine poly(N-methylglycine) for introducing stealth properties, are generated for siRNA delivery. Intravenous injection of siMFAP-5/DES PICMs significantly reduces the hepatic tumor burden in a syngeneic implantation model of HCC, with a superior MFAP-5 knockdown effect over siMFAP-5 PICMs or lipid nanoparticles. Transcriptome and histological analysis reveal that MFAP-5 knockdown inhibited CAF-related tumor vascularization, suggesting the anti-angiogenic effect of RNA interference therapy. In conclusion, multicompartment PICMs combining siMFAP-5 and DES in a single polypept(o)ide micelle induce a specific knockdown of MFAP-5 and demonstrate a potent antitumor efficacy (80% reduced tumor burden vs untreated control) in a clinically relevant HCC model.

2.
Int J Biol Macromol ; 268(Pt 2): 131671, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38641272

RESUMEN

In this study, N-Methyl-N-nitrosourea (MNU) was intraperitoneally injected to construct a mouse retinitis pigmentosa (RP) model to evaluate the protective effect of chitosan and ß-carotene on RP. The results demonstrated that chitosan synergized with ß-carotene significantly reduced retinal histopathological structural damage in RP mice. The co-treatment group of ß-carotene and chitosan restored the retinal thickness and outer nuclear layer thickness better than the group treated with the two alone, and the thickness reached the normal level. The content of ß-carotene and retinoids in the liver of chitosan and ß-carotene co-treated group increased by 46.75 % and 20.69 %, respectively, compared to the ß-carotene group. Chitosan and ß-carotene supplement suppressed the expressions of Bax, Calpain2, Caspase3, NF-κB, TNF-α, IL-6, and IL-1ß, and promoted the up-regulation of Bcl2. Chitosan and ß-carotene interventions remarkably contributed to the content of SCFAs and enhanced the abundance of Ruminococcaceae, Rikenellaceae, Odoribacteraceae and Helicobacteraceae. Correlation analysis demonstrated a strong association between gut microbiota and improvement in retinitis pigmentosa. This study will provide a reference for the study of the gut-eye axis.


Asunto(s)
Quitosano , Metilnitrosourea , Retinitis Pigmentosa , beta Caroteno , Animales , beta Caroteno/farmacología , Quitosano/farmacología , Quitosano/química , Retinitis Pigmentosa/tratamiento farmacológico , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología , Ratones , Sinergismo Farmacológico , Retina/efectos de los fármacos , Retina/metabolismo , Retina/patología , Modelos Animales de Enfermedad , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Retinoides/farmacología , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo
3.
Foods ; 13(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38472816

RESUMEN

Plasma-activated water (PAW) treatment is an effective technique for the quality retention of fresh vegetables with cold atmospheric plasma using controllable parameters. This study investigated the effect of PAW on the postharvest quality of shepherd's purse (Capsella bursa-pastoris). The results displayed that PAW treatment with an activation time of 5, 10, 15, and 20 min reduced the yellowing rate and weight loss of the shepherd's purse during 9 days of storage. Compared with untreated samples, PAW treatment at different times reduced the number of total bacteria, coliform, yeast, and mold by 0.18-0.94, 0.59-0.97, 0.90-1.18, and 1.03-1.17 Log CFU/g after 9 days of storage, respectively. Additionally, the treatments with PAW-5 and PAW-10 better preserved ascorbic acid, chlorophyll, total phenol, and total flavonoid contents. They also maintained the higher antioxidant and CAT activity and inhibited the formation of terpenes, alcohols, and nitrogen oxide compounds of the shepherd's purse at the end of storage. The microstructural result illustrated that the cells of the shepherd's purse treated with PAW-5 and PAW-10 were relatively intact, with a small intercellular space after storage. This study demonstrated that PAW treatment effectively improved the postharvest quality of shepherd's purse.

4.
Food Res Int ; 174(Pt 1): 113592, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37986456

RESUMEN

This study aimed to evaluate the effects of six polysaccharides on the utilization of ß-carotene from the perspective of gut microbiota using both in vitro simulated anaerobic fermentation systems and in vivo animal experiments. In the in vitro experiments, the addition of arabinoxylan, arabinogalactan, mannan, inulin, chitosan, and glucan led to a 31.07-79.12% decrease in ß-carotene retention and a significant increase in retinol content (0.21-0.99-fold) compared to ß-carotene alone. Among them, the addition of chitosan produced the highest level of retinol. In the in vivo experiments, mice treated with the six polysaccharides exhibited a significant increase (2.51-5.78-fold) in serum ß-carotene content compared to the group treated with ß-carotene alone. The accumulation of retinoids in the serum, liver, and small intestine increased by 13.56-21.61%, 12.64-56.27%, and 7.9%-71.69%, respectively. The expression of ß-carotene cleavage enzymes was increased in the liver. Genetic analysis of small intestinal tissue revealed no significant enhancement in the expression of genes related to ß-carotene metabolism. In the gut microbiota environment, the addition of polysaccharides generated more SCFAs and altered the structure and composition of the gut microbiota. The correlation analysis revealed a strong association between gut microbes (Ruminococcaceae and Odoribacteraceae) and ß-carotene metabolism and absorption. Collectively, our findings suggest that the addition of polysaccharides may improve ß-carotene utilization by modulating the gut microbiota.


Asunto(s)
Quitosano , Microbioma Gastrointestinal , Ratones , Animales , beta Caroteno/metabolismo , Vitamina A , Polisacáridos/farmacología
5.
Food Funct ; 14(21): 9554-9566, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37822286

RESUMEN

In order to investigate the synergistic improving effect of lutein (LUT) and epigallocatechin-3-gallate (EGCG) treatment on retinitis pigmentosa (RP), an N-methyl-N-nitrosourea (MNU)-induced mouse model was conducted in the present study. Compared to the LUT alone treatment group, in the LUT combined with EGCG (LUT-EGCG) treatment group, the accumulation content of LUT was significantly increased by 50.24% in the liver. The morphological results indicated that LUT-EGCG treatment significantly improved the retina structure with the thickness of the outer nuclear layer restored to 185.28 ± 0.29 µm, showing no significant difference compared to the control group. The LUT-EGCG treatment also increased the production of short-chain fatty acids, such as acetic and propionic acids. Compared with the LUT alone treatment, the LUT-EGCG treatment significantly increased the relative abundance of Lachnospiraceae and Helicobacteraceae. RT-qPCR results indicated that LUT-EGCG treatment significantly increased the antiapoptotic gene Bcl-2 expression. In addition, the expression of IL-6 was significantly down-regulated in the LUT-EGCG group, while there was no significance in NF-κß, TNF-α, IL-1ß, and IL-18 compared with the LUT group. Correlation analysis supported the conclusion that LUT combined with EGCG may improve RP by modulating antiapoptotic gene expression and regulating the abundance of gut microbiota. However, the underlying mechanism still needs further research.


Asunto(s)
Catequina , Retinitis Pigmentosa , Ratones , Animales , Metilnitrosourea/toxicidad , Luteína , Retinitis Pigmentosa/tratamiento farmacológico , Retinitis Pigmentosa/genética , Retina , Catequina/farmacología
6.
J Food Sci ; 88(6): 2693-2703, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37204125

RESUMEN

This study investigates the composition and form of carotenoids in typical fruits and vegetables obtained through saponification or non-saponification and evaluates the correlation between carotenoids and antioxidant capacity. The results showed that the content of the total carotenoids in non-saponified broccoli was the highest, reaching 1505.93 ± 71.99 µg/g d.w. The content of the total carotenoids in pumpkin flesh and broccoli after saponification was reduced by 71.82% and 52.02%, respectively. The content of lutein in spinach decreased by 24.4% after saponification, but the content of ß-carotene increased compared to non-saponification. After saponification, the total antioxidant activities of apple peel, radish peel, radish flesh, and maize were significantly increased by 30.26%, 91.74%, 425.30%, and 242.88%, respectively. Saponification also improved the antioxidant activities of carotenoids in maize under six different antioxidant assays. The highest correlation was found between the total amount of carotenoids and oxygen radical absorbance capacity (R = 0.945), whereas the correlation coefficients among reducing power, 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid), hydroxyl and superoxide radical scavenging activity, and total carotenoids' content were 0.935, 0.851, 0.872, 0.885, and 0.777, respectively, all showing significant correlations. The study demonstrates that saponification can increase the total carotenoid content and antioxidation for apple peel, radish peel, radish flesh, and maize. Moreover, carotenoids were significantly positively correlated with most in vitro antioxidant assays. This study provides a theoretical basis for improving the postharvest added value of fruits and vegetables and rationally utilizing their byproducts.


Asunto(s)
Brassica , Malus , Carotenoides/análisis , Antioxidantes/análisis , Verduras , Frutas/química , beta Caroteno
7.
J Sci Food Agric ; 103(7): 3306-3314, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36737411

RESUMEN

BACKGROUND: Numerous positive effects have been attributed to lutein, a lipophilic nutrient, including resisting ultraviolet radiation and protecting retinal pigment epithelial (RPE) cells against blue light damage. It also has preventive effects against cardiovascular disease and cancer. However, its use could be limited by its poor stability and low bioaccessibility in the human digestive system. An encapsulation delivery system was therefore developed to resolve these limitations. In this study, chitosan-modified lutein nanoliposomes (CS-LNLs), chitosan-EGCG covalently modified lutein nanoliposomes (C-CS-EGCG-LNLs), and chitosan-EGCG noncovalently modified lutein nanoliposomes (non-C-CS-EGCG-LNLs) were designed. The average particle size, ζ-potential, and retention of lutein during storage were measured to indicate the physicochemical stability of the modified lutein nanoliposomes. The bioaccessibility of modified lutein nanoliposomes was also investigated to demonstrate the availability of lutein in the human digestive system. RESULTS: First, Fourier-transform infrared spectroscopy (FTIR) verified that covalent bonds between chitosan and EGCG were formed. Subsequently, ζ-potential results revealed that C-CS-EGCG-LNLs had a relatively stable structure in comparison with lutein nanoliposomes (LNLs). The retention rate of lutein in CS-LNLs, C-CS-EGCG-LNLs, and non-C-CS-EGCG-LNLs was improved, especially in C-CS-EGCG-LNLs (at around 70% of lutein in initial system). An in vitro digestion experiment illustrated that CS-LNLs, C-CS-EGCG-LNLs, and non-C-CS-EGCG-LNLs presented relatively higher bioaccessibility, especially in C-CS-EGCG-LNLs (at around 33% of luein in initial system), which increased 2.5 and 1.65 times in comparison with free lutein and LNLs, respectively. CONCLUSION: Overall, the results showed that C-CS-EGCG-LNLs presented greater physicochemical stability and bioaccessibility than LNLs, CS-LNLs, and non-C-CS-EGCG-LNLs. © 2023 Society of Chemical Industry.


Asunto(s)
Catequina , Quitosano , Nanopartículas , Humanos , Antioxidantes/química , Catequina/química , Quitosano/química , Luteína , Nanopartículas/química , Tamaño de la Partícula , Rayos Ultravioleta
8.
Food Chem ; 414: 135702, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-36821919

RESUMEN

Emulsion gels with unique structural and mechanical properties have promising applications in 3D food printing. The purpose of this paper was to investigate the rheological property, ß-carotene stability and 3D printing characteristic of whey protein isolate (WPI) emulsion gels by adding guar gum (GG), locust bean gum (LBG), xanthan gum (XG) and gum arabic (GA). The results showed that all samples exhibited shear thinning behavior and elastic characteristic. XG could reduce water mobility and increase WHC of WPI emulsion gel. The disulfide bond was the main chemical molecular force of emulsion gels, and XG significantly increased the hydrophobic interactions. GG and LBG increased gel strength, hardness and gumminess, reduced springiness, cohesiveness and chewiness of emulsion gels. GG sample had the best printing performance, more uniform network structure and better stability of ß-carotene. This study provided a theoretical basis for 3D printing functional food.


Asunto(s)
Polisacáridos Bacterianos , beta Caroteno , Proteína de Suero de Leche , Emulsiones/química , Polisacáridos Bacterianos/química , Geles , Reología
9.
Food Chem ; 414: 135706, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-36821922

RESUMEN

This study aimed to evaluate the change of digestibility and antioxidant activity of protein and lipid after mixing walnuts, cashews, and pistachios using in vitro and in vivo models. The results showed that mixed nuts significantly reduced the digested particle size and the degree of hydrolysis of protein and triacylglycerol compared to single nuts in vitro. As a consequence of co-digestion, bioaccessibility and antioxidant activity for amino acids and fatty acids were increased by 1.12-1.87 fold and 1.62-3.81 fold, respectively. In vivo studies, the mixed nuts diet increased the concentration of amino acids and fatty acids in the small intestine by 27.69%-158.26% and 18.13%-152.09%, respectively, and enhanced levels of antioxidant enzymes in the liver and serum, all without causing weight gain. These findings highlight the positive interaction between single and mixed nuts, where mixed nuts enhanced the digestibility and antioxidant activity of single nuts both in vitro and in vivo.


Asunto(s)
Juglans , Nueces , Nueces/química , Antioxidantes/análisis , Juglans/química , Ácidos Grasos/análisis , Aminoácidos/análisis
10.
Food Chem ; 404(Pt B): 134689, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36302284

RESUMEN

A new method for the drying of beef and chicken meats at low temperatures (4 °C) was developed by using a composite film based on sodium carboxymethyl cellulose-gum Arabic (SG) with anthocyanins from Cinnamomum camphora fruit peel (ANC.P, 0, 1, 1.5 and 2%). After incorporation of ANC.P into SG, the physicochemical properties, morphological characteristics, melting, molecular, antioxidant and antimicrobial properties of the resulting dehydration films were improved. Film-dried beef and chicken slices showed higher values of dehydration ratio on day 6 (54.58% and 72.06%, respectively) compared with the control samples without film (4.55% and 7.04%, respectively). Results showed that SG-ANC.P film-dried meats exhibited more stable pH and color, higher rehydration rate, better sensory quality and microbial growth inhibition compared with SG film-dried samples and control samples, in which control samples showed the highest total viable count values (6.02 and 5.16 log CFU/mL for beef and chicken, respectively) during storage.


Asunto(s)
Deshidratación , Embalaje de Alimentos , Bovinos , Animales , Embalaje de Alimentos/métodos , Antocianinas , Recuento de Colonia Microbiana , Pollos , Biopolímeros , Conservación de Alimentos/métodos
11.
J Adv Res ; 50: 35-54, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36341987

RESUMEN

INTRODUCTION: Fluoride is widely presented in drinking water and foods. A strong relation between fluoride exposure and obesity has been reported. However, the potential mechanisms on fluoride-induced obesity remain unexplored. Objectives and methods The effects of fluoride on the obesity were investigated using mice model. Furthermore, the role of gut homeostasis in exacerbation of the obesity induced by fluoride was evaluated. Results The results showed that fluoride alone did not induce obesity in normal diet (ND) fed mice, whereas, it could trigger exacerbation of obesity in high-fat diet (HFD) fed mice. Fluoride impaired intestinal barrier and activated Toll-like receptor 4 (TLR4) signaling to induce obesity, which was further verified in TLR4-/- mice. Furthermore, fluoride could deteriorate the gut microbiota in HFD mice. The fecal microbiota transplantation from fluoride-induced mice was sufficient to induce obesity, while the exacerbation of obesity by fluoride was blocked upon gut microbiota depletion. The fluoride-induced bloom of Erysipelatoclostridium ramosum was responsible for exacerbation of obesity. In addition, a potential strategy for prevention of fluoride-induced obesity was proposed by intervention with polysaccharides from Fuzhuan brick tea. Conclusion Overall, these results provide the first evidence of a comprehensive cross-talk mechanism between fluoride and obesity in HFD fed mice, which is mediated by gut microbiota and intestinal barrier. E. ramosum was identified as a crucial mediator of fluoride induced obesity, which could be explored as potential target for prevention and treatment of obesity with exciting translational value.


Asunto(s)
Fluoruros , Receptor Toll-Like 4 , Animales , Ratones , Fluoruros/farmacología , Dieta Alta en Grasa/efectos adversos , Obesidad/prevención & control
12.
Antioxidants (Basel) ; 11(11)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36421453

RESUMEN

α- and ß-carotenes belong to the most essential carotenoids in the human body and display remarkable pharmacological value for health due to their beneficial antioxidant activities. Distinct high α-/ß-carotene stoichiometries have gained increasing attention for their effective preventions of Alzheimer's disease, cardiovascular disease, and cancer. However, it is extremely difficult to obtain α-carotene in nature, impeding the accumulations of high α-/ß-carotene stoichiometries and excavation of their antioxidant activities. Herein, we developed a dynamically operable strategy based on lycopene cyclases (LCYB and LCYE) for concurrently enriching α- and ß-carotenes along with high stoichiometries in E. coli. Membrane-targeted and promoter-centered approaches were firstly implemented to spatially enhance catalytic efficiency and temporally boost expression of TeLCYE to address its low competitivity at the starting stage. Dynamically temperature-dependent regulation of TeLCYE and TeLCYB was then performed to finally achieve α-/ß-carotene stoichiometries of 4.71 at 37 °C, 1.65 at 30 °C, and 1.06 at 25 °C, respectively. In the meantime, these α-/ß-carotene ratios were confirmed to result in diverse antioxidative activities. According to our knowledge, this is the first time that both the widest range and antioxidant activities of high α/ß-carotene stoichiometries were reported in any organism. Our work provides attractive potentials for obtaining natural products with competitivity and a new insight on the protective potentials of α-/ß-carotenes with high ratios for health supply.

13.
Foods ; 11(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36429262

RESUMEN

In the present study, protein-polysaccharide Maillard conjugates were used as novel emulsifiers and bioactive carriers. Effects and potential mechanisms of zeaxanthin dipalmitate (ZD)-enriched emulsion stabilized with whey protein isolate (WPI)-gum Arabic (GA) conjugate (WPI-GA-ZD) and ZD-free emulsion (WPI-GA) on gut microbiota and inflammation were investigated using a model of dextran sulfate sodium (DSS)-induced colitis in mice. As a result, supplementation with WPI-GA and WPI-GA-ZD improved the serum physiological and biochemical indicators, decreased the expression of pro-inflammatory cytokines and related mRNA, as well as increased the tight junction proteins to a certain extent. 16S rDNA sequencing analyses showed that supplementation with WPI-GA and WPI-GA-ZD presented differential modulation of gut microbiota and played regulatory roles in different metabolic pathways to promote health. Compared with WPI-GA, the relative abundances of Akkermansia, Lactobacillus and Clostridium_IV genera were enriched by the intervention of WPI-GA-ZD. Overall, the designed carotenoid-enriched emulsion stabilized with protein-polysaccharide conjugates showed potential roles in promoting health.

14.
J Agric Food Chem ; 70(42): 13592-13601, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36214842

RESUMEN

Recent studies indicated a strong relationship between carotenoids and gut microflora. However, their structure-activity relationship remains unclear. This study evaluated the interaction between four typical carotenoids (ß-carotene, lutein, lycopene, and astaxanthin) and gut microflora using an in vitro fermentation model. After 24 h of fermentation, the retention rates of the four carotenoids were 1.40, 1.38, 1.46, and 5.63 times lower than those of their without gut microflora control groups, respectively. All four carotenoid treated groups significantly increased total short-chain fatty acids (SCFAs) production. All carotenoid supplements significantly promoted the abundance of Roseburia and Parasutterella and inhibited the abundance of Collinsella, while ß-carotene, lutein, lycopene, and astaxanthin significantly promoted the abundance of Ruminococcus, Sutterella, Subdoligranulum, and Megamonas, respectively. Furthermore, xanthophylls have a more significant impact on gut microflora than carotenes. This study provides a new way to understand how carotenoids work in the human body with the existing gut microflora.


Asunto(s)
Carotenoides , Microbioma Gastrointestinal , Humanos , Carotenoides/metabolismo , Luteína/farmacología , Luteína/metabolismo , beta Caroteno , Licopeno , Fermentación , Xantófilas/farmacología , Zeaxantinas
15.
Food Chem ; 393: 133422, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35689924

RESUMEN

The effects of guar gum (GG), xanthan gum (XG), carrageenan gum (CG), xanthan-guar gum blend (XG-GG), chitosan (CS), gum arabic (GA) on the water migration, rheological and 3D printing properties of ß-carotene loaded yam starch-based hydrogel (BCH) were investigated to expand product form of ß-carotene. The results showed that CS addition promoted the migration of weakly bound water to tightly bound water in BCH. Addition of GG, CG, XG-GG, CS and GA enhanced apparent viscosity, G', G'', hardness and gumminess of BCH. CG, XG-GG, CS and GA addition improved printing stability of BCH. The printed objects added with GG and CS displayed smooth lines with fine resolution and higher formability, which showed a more uniform pore distribution and thinner gel skeleton structure. The results of XRD showed that hydrocolloids addition decreased the relative crystallinity of BCH. A combination of physicochemical parameters could be used to discriminate samples through hierarchical cluster analysis.


Asunto(s)
Dioscorea , Almidón , Carragenina , Coloides/química , Goma Arábiga/química , Hidrogeles , Gomas de Plantas/química , Polisacáridos Bacterianos/química , Impresión Tridimensional , Reología , Almidón/química , Viscosidad , Agua/química , beta Caroteno
16.
J Sci Food Agric ; 102(5): 1872-1882, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-34498276

RESUMEN

BACKGROUND: Chickpea protein isolate (CPI) originating from chickpeas has the advantages of facilitating the stability of food emulsions. Stevioside (STE) exhibits a notable surface activity and can improve the water solubility of numerous hydrophobic nutrients. STE and protein mixtures show great potential as emulsions stabilizers. The present study aimed to prepare a novel nanoemulsion for encapsulating lutein (LUT) by ultrasonic homogenization using chickpea protein isolate-stevioside complex (CPI-STE) as a stabilizer and also to investigate the physicochemical characteristics. RESULTS: The results obtained showed that different preparation conditions demonstrated significant influences on the physicochemical properties of CPI-STE-LUT nanoemulsions. Under the optimal condition, the average particle size of CPI-STE-LUT nanoemulsions was 195.1 nm, and the emulsifying and encapsulation efficiencies of lutein were 91.04% and 87.56%, respectively. CPI-STE-LUT nanoemulsions stabilized by CPI-STE could significantly increase the emulsifying and encapsulation efficiencies of lutein compared to that stabilized by CPI. Fourier transform infrared spectroscopy revealed that hydrogen bond was the main binding force of CPI and lutein, and there was a covalent bond between the two molecules. Furthermore, the stability of CPI-STE-LUT nanoemulsions in gastrointestinal phase was higher than that of CPI-LUT nanoemulsions, which could load lutein more effectively and be more resistant to digestive enzymes. CONCLUSION: The present study reports the physicochemical characterization of CPI-STE-LUT nanoemulsions for the first time. CPI-STE-LUT nanoemulsions were characterized by a small average particle size lower than 200 nm, as well as high emulsifying and encapsulation efficiencies, and good stability. © 2021 Society of Chemical Industry.


Asunto(s)
Cicer , Diterpenos de Tipo Kaurano , Emulsiones/química , Glucósidos , Luteína/química , Tamaño de la Partícula
17.
Int J Biol Macromol ; 193(Pt A): 53-63, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34688674

RESUMEN

In order to construct nano-lutein hydrogels with sustained release properties, the basic properties and structure of nano-lutein hydrogels cross-linked with different concentrations of Ca2+ were investigated. The results showed that the highest loading capacity for lutein reached 770.88 µg/g, while the encapsulation efficiency was as high as 99.39%. When Ca2+ concentration was lower than 7.5 mM, the filling of lutein nanoparticles reduced the hardness and gumminess of the hydrogel. The resilience and cohesiveness of the hydrogel decreased as the concentration of Ca2+ increased. Filling with lutein nanoparticles and increasing Ca2+ concentration both increased the G' and G″. The hydrogel loaded with lutein showed different swelling properties in different pH environments, the filling of lutein nanoparticles inhibited the swelling of the hydrogel. When Ca2+ concentration was greater than 7.5 mM, the cut-off amount of lutein on the surface of the Ca2+ cross-linked hydrogel was larger. The digestive enzymes quickly degraded the hydrogel structure, resulting in a high initial release of lutein. DSC and FTIR results showed that lutein nanoparticles were mainly physically trapped in the hydrogel network structure. Lutein nanoparticles and excessive Ca2+ affected the stability of cross-linked ionic bonds in the hydrogel, thereby reducing its thermodynamic stability.


Asunto(s)
Alginatos/química , Calcio/química , Reactivos de Enlaces Cruzados/química , Hidrogeles/química , Luteína/química
18.
Food Chem ; 354: 129528, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-33756320

RESUMEN

This study aims to develop novel lutein nanoparticles encapsulized by stevioside (LUT-STE, 165 ± 2 nm average particles size) and systematically evaluate its bioavailability. Multiple spectroscopy and NMR analyses showed lutein and stevioside could interact through hydrogen bonds, CHπ interaction and van der Waals forces. Molecular docking simulation showed lutein was well distributed in the hydrophobic cavity of stevioside. Analyzed by Caco-2 cellular models, the transported amount of LUT-STE was 2.39 times that of lutein in 120 min with a Papp (B â†’ A)/Papp (A â†’ B) value of 0.63 ± 0.04. Nystatin and dynasore significantly reduced the cellular uptake of LUT-STE by 41.3% and 57.7%, respectively. Compared with free lutein, LUT-STE increased the Cmax in mice plasma by 5.01-fold and promoted the accumulation in multiple organs. LUT-STE promoted the protein expressions of CD36, NPC1L1 and PPARγ in both cell and animal models. In conclusion, stevioside entrapment significantly promote the bioavailability of lutein through multiple transmembrane pathways.


Asunto(s)
Diterpenos de Tipo Kaurano/química , Glucósidos/química , Luteína/química , Animales , Disponibilidad Biológica , Células CACO-2 , Cápsulas/química , Humanos , Ratones , Simulación del Acoplamiento Molecular
19.
Carbohydr Polym ; 235: 115944, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32122483

RESUMEN

Carboxymethyl cellulose (CMC) based novel functional films containing Chinese chives root extract (CRE) at different concentrations (1, 3 and 5 % in w/w) were successfully fabricated. It was revealed by SEM that higher extract concentration triggered the formation of agglomerates within the film. Tensile strength of the films was decreased from 30.91 to 16.48 MPa. Thickness of films was increased from 43 to 84 µm, while decrease in water solubility from 77.51-52.91 %, swelling degree from 55.74 to 40.37 %, and water vapor permeability from 5.76 to 1.17 10-10 gm-1s-1 Pa-1 was observed. DPPH and ABTS radical scavenging ability of CMC-CRE films was increased from 0 to 58 % and 82 %, respectively. CMC-CRE5 film showed the highest biodegradability of 58.14 %. The film prepared by the addition of CRE into CMC also exhibited good antioxidant and antimicrobial activity indicating that it could be developed as a bio-composite food packaging material for the food industry.


Asunto(s)
Antibacterianos/farmacología , Antioxidantes/farmacología , Carboximetilcelulosa de Sodio/farmacología , Cebollino/química , Embalaje de Alimentos , Antibacterianos/química , Antioxidantes/química , Benzotiazoles/antagonistas & inhibidores , Compuestos de Bifenilo/antagonistas & inhibidores , Carboximetilcelulosa de Sodio/química , China , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Picratos/antagonistas & inhibidores , Solubilidad , Vapor , Ácidos Sulfónicos/antagonistas & inhibidores , Propiedades de Superficie
20.
Int J Biol Macromol ; 150: 595-604, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32057859

RESUMEN

The objective of the present study was to develop chitosan (CS) based novel functional films containing Chinese chive root extract (CRE) using solution casting method. CRE at different concentrations (1, 3 and 5% in w/w) were incorporated into the film-forming solution. Scanning electron microscopy (SEM), Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and thermal behavior analysis (DSC & TGA) were performed to investigate the structure, potential interaction and thermal stability of prepared films. It was revealed by SEM that higher extract concentration triggered the formation of agglomerates within the films. Incorporation of CRE into CS resulted in decrease tensile properties of the films from 28.9 to 15.4 MPa, whereas thickness was increased from 0.076 to 0.113 mm. The water solubility, swelling degree and water vapor permeability were significantly decreased from 31.6 to 18.7%, 57.4 to 40.5% and 15.67 to 7.81 × 10-11 g·m-1s-1Pa-1, respectively. DPPH and ABTS radical scavenging ability of CS-CRE films were increased from 6.95 to 47.05% and 11.98 to 57.38%, respectively. CS-CRE5 film showed the highest biodegradability of 47.36%. The films prepared by addition of CRE into CS exhibited good antioxidant and antimicrobial activity indicating that it could be developed as bio-composite food packaging material for food industry.


Asunto(s)
Materiales Biocompatibles/química , Quitosano/química , Cebollino/química , Embalaje de Alimentos , Extractos Vegetales/química , Raíces de Plantas/química , Fenómenos Químicos , Cromatografía Líquida de Alta Presión , Fenómenos Mecánicos , Fitoquímicos/química , Polifenoles/química , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA