Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Front Med (Lausanne) ; 11: 1414637, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966533

RESUMEN

Introduction: Cardiovascular disease (CVD) stands as a pervasive catalyst for illness and mortality on a global scale, underscoring the imperative for sophisticated prediction methodologies within the ambit of healthcare data analysis. The vast volume of medical data available necessitates effective data mining techniques to extract valuable insights for decision-making and prediction. While machine learning algorithms are commonly employed for CVD diagnosis and prediction, the high dimensionality of datasets poses a performance challenge. Methods: This research paper presents a novel hybrid model for predicting CVD, focusing on an optimal feature set. The proposed model encompasses four main stages namely: preprocessing, feature extraction, feature selection (FS), and classification. Initially, data preprocessing eliminates missing and duplicate values. Subsequently, feature extraction is performed to address dimensionality issues, utilizing measures such as central tendency, qualitative variation, degree of dispersion, and symmetrical uncertainty. FS is optimized using the self-improved Aquila optimization approach. Finally, a hybridized model combining long short-term memory and a quantum neural network is trained using the selected features. An algorithm is devised to optimize the LSTM model's weights. Performance evaluation of the proposed approach is conducted against existing models using specific performance measures. Results: Far dataset-1, accuracy-96.69%, sensitivity-96.62%, specifity-96.77%, precision-96.03%, recall-97.86%, F1-score-96.84%, MCC-96.37%, NPV-96.25%, FPR-3.2%, FNR-3.37% and for dataset-2, accuracy-95.54%, sensitivity-95.86%, specifity-94.51%, precision-96.03%, F1-score-96.94%, MCC-93.03%, NPV-94.66%, FPR-5.4%, FNR-4.1%. The findings of this study contribute to improved CVD prediction by utilizing an efficient hybrid model with an optimized feature set. Discussion: We have proven that our method accurately predicts cardiovascular disease (CVD) with unmatched precision by conducting extensive experiments and validating our methodology on a large dataset of patient demographics and clinical factors. QNN and LSTM frameworks with Aquila feature tuning increase forecast accuracy and reveal cardiovascular risk-related physiological pathways. Our research shows how advanced computational tools may alter sickness prediction and management, contributing to the emerging field of machine learning in healthcare. Our research used a revolutionary methodology and produced significant advances in cardiovascular disease prediction.

3.
Sci Rep ; 14(1): 4533, 2024 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402249

RESUMEN

Postpartum Depression Disorder (PPDD) is a prevalent mental health condition and results in severe depression and suicide attempts in the social community. Prompt actions are crucial in tackling PPDD, which requires a quick recognition and accurate analysis of the probability factors associated with this condition. This concern requires attention. The primary aim of our research is to investigate the feasibility of anticipating an individual's mental state by categorizing individuals with depression from those without depression using a dataset consisting of text along with audio recordings from patients diagnosed with PPDD. This research proposes a hybrid PPDD framework that combines Improved Bi-directional Long Short-Term Memory (IBi-LSTM) with Transfer Learning (TL) based on two Convolutional Neural Network (CNN) architectures, respectively CNN-text and CNN audio. In the proposed model, the CNN section efficiently utilizes TL to obtain crucial knowledge from text and audio characteristics, whereas the improved Bi-LSTM module combines written material and sound data to obtain intricate chronological interpersonal relationships. The proposed model incorporates an attention technique to augment the effectiveness of the Bi-LSTM scheme. An experimental analysis is conducted on the PPDD online textual and speech audio dataset collected from UCI. It includes textual features such as age, women's health tracks, medical histories, demographic information, daily life metrics, psychological evaluations, and 'speech records' of PPDD patients. Data pre-processing is applied to maintain the data integrity and achieve reliable model performance. The proposed model demonstrates a great performance in better precision, recall, accuracy, and F1-score over existing deep learning models, including VGG-16, Base-CNN, and CNN-LSTM. These metrics indicate the model's ability to differentiate among women at risk of PPDD vs. non-PPDD. In addition, the feature importance analysis demonstrates that specific risk factors substantially impact the prediction of PPDD. The findings of this research establish a basis for improved precision and promptness in assessing the risk of PPDD, which may ultimately result in earlier implementation of interventions and the establishment of support networks for women who are susceptible to PPDD.


Asunto(s)
Aprendizaje Profundo , Depresión Posparto , Trastorno Depresivo , Humanos , Femenino , Depresión Posparto/diagnóstico , Depresión Posparto/epidemiología , Prevalencia , Factores de Riesgo
4.
Artículo en Inglés | MEDLINE | ID: mdl-38278999

RESUMEN

Smart, secure, and environmentally friendly smart cities are all the rage in urban planning. Several technologies, including the Internet of Things (IoT) and edge computing, are used to develop smart cities. Early and accurate fire detection in a Smart city is always desirable and motivates the research community to create a more efficient model. Deep learning models are widely used for fire detection in existing research, but they encounter several issues in typical climate environments, such as foggy and normal. The proposed model lends itself to IoT applications for authentic fire surveillance because of its minimal configuration load. A hybrid Local Binary Pattern Convolutional Neural Network (LBP-CNN) and YOLO-V5 model-based fire detection model for smart cities in the foggy scenario is presented in this research. Additionally, we recommend a two-part technique for extracting features to be applied to YOLO throughout this article. Using a transfer learning technique, the first portion of the proposed approach for extracting features retrieves standard features. The section part is for retrieval of additional valuable information related to the current activity using the LBP (Local Binary Pattern) protective layer and classifications layers. This research utilizes an online Kaggle fire and smoke dataset with 13950 normal and foggy images. The proposed hybrid model is premised on a two-cascaded YOLO model. In the initial cascade, smoke and fire are detected in the normal surrounding region, and the second cascade fire is detected with density in a foggy environment. In experimental analysis, the proposed model achieved a fire and smoke detection precision rate of 96.25% for a normal setting, 93.2% for a foggy environment, and a combined detection average precision rate of 94.59%. The proposed hybrid system outperformed existing models in terms of better precision and density detection for fire and smoke.

5.
Sci Rep ; 13(1): 14605, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37669970

RESUMEN

The patients' vocal Parkinson's disease (PD) changes could be identified early on, allowing for management before physically incapacitating symptoms appear. In this work, static as well as dynamic speech characteristics that are relevant to PD identification are examined. Speech changes or communication issues are among the challenges that Parkinson's individuals may encounter. As a result, avoiding the potential consequences of speech difficulties brought on by the condition depends on getting the appropriate diagnosis early. PD patients' speech signals change significantly from those of healthy individuals. This research presents a hybrid model utilizing improved speech signals with dynamic feature breakdown using CNN and LSTM. The proposed hybrid model employs a new, pre-trained CNN with LSTM to recognize PD in linguistic features utilizing Mel-spectrograms derived from normalized voice signal and dynamic mode decomposition. The proposed Hybrid model works in various phases, which include Noise removal, extraction of Mel-spectrograms, feature extraction using pre-trained CNN model ResNet-50, and the final stage is applied for classification. An experimental analysis was performed using the PC-GITA disease dataset. The proposed hybrid model is compared with traditional NN and well-known machine learning-based CART and SVM & XGBoost models. The accuracy level achieved in Neural Network, CART, SVM, and XGBoost models is 72.69%, 84.21%, 73.51%, and 90.81%. The results show that under these four machine approaches of tenfold cross-validation and dataset splitting without samples overlapping one individual, the proposed hybrid model achieves an accuracy of 93.51%, significantly outperforming traditional ML models utilizing static features in detecting Parkinson's disease.


Asunto(s)
Enfermedad de Parkinson , Humanos , Lingüística , Aprendizaje Automático , Redes Neurales de la Computación , Proyectos de Investigación
6.
Sensors (Basel) ; 23(18)2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37765873

RESUMEN

Brain tumors in Magnetic resonance image segmentation is challenging research. With the advent of a new era and research into machine learning, tumor detection and segmentation generated significant interest in the research world. This research presents an efficient tumor detection and segmentation technique using an adaptive moving self-organizing map and Fuzzyk-mean clustering (AMSOM-FKM). The proposed method mainly focused on tumor segmentation using extraction of the tumor region. AMSOM is an artificial neural technique whose training is unsupervised. This research utilized the online Kaggle Brats-18 brain tumor dataset. This dataset consisted of 1691 images. The dataset was partitioned into 70% training, 20% testing, and 10% validation. The proposed model was based on various phases: (a) removal of noise, (b) selection of feature attributes, (c) image classification, and (d) tumor segmentation. At first, the MR images were normalized using the Wiener filtering method, and the Gray level co-occurrences matrix (GLCM) was used to extract the relevant feature attributes. The tumor images were separated from non-tumor images using the AMSOM classification approach. At last, the FKM was used to distinguish the tumor region from the surrounding tissue. The proposed AMSOM-FKM technique and existing methods, i.e., Fuzzy-C-means and K-mean (FMFCM), hybrid self-organization mapping-FKM, were implemented over MATLAB and compared based on comparison parameters, i.e., sensitivity, precision, accuracy, and similarity index values. The proposed technique achieved more than 10% better results than existing methods.


Asunto(s)
Neoplasias Encefálicas , Humanos , Neoplasias Encefálicas/diagnóstico por imagen , Algoritmos , Análisis por Conglomerados , Aprendizaje Automático , Personalidad
7.
Sensors (Basel) ; 23(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37765912

RESUMEN

Industrial automation systems are undergoing a revolutionary change with the use of Internet-connected operating equipment and the adoption of cutting-edge advanced technology such as AI, IoT, cloud computing, and deep learning within business organizations. These innovative and additional solutions are facilitating Industry 4.0. However, the emergence of these technological advances and the quality solutions that they enable will also introduce unique security challenges whose consequence needs to be identified. This research presents a hybrid intrusion detection model (HIDM) that uses OCNN-LSTM and transfer learning (TL) for Industry 4.0. The proposed model utilizes an optimized CNN by using enhanced parameters of the CNN via the grey wolf optimizer (GWO) method, which fine-tunes the CNN parameters and helps to improve the model's prediction accuracy. The transfer learning model helps to train the model, and it transfers the knowledge to the OCNN-LSTM model. The TL method enhances the training process, acquiring the necessary knowledge from the OCNN-LSTM model and utilizing it in each next cycle, which helps to improve detection accuracy. To measure the performance of the proposed model, we conducted a multi-class classification analysis on various online industrial IDS datasets, i.e., ToN-IoT and UNW-NB15. We have conducted two experiments for these two datasets, and various performance-measuring parameters, i.e., precision, F-measure, recall, accuracy, and detection rate, were calculated for the OCNN-LSTM model with and without TL and also for the CNN and LSTM models. For the ToN-IoT dataset, the OCNN-LSTM with TL model achieved a precision of 92.7%; for the UNW-NB15 dataset, the precision was 94.25%, which is higher than OCNN-LSTM without TL.

8.
Sci Rep ; 13(1): 12473, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528148

RESUMEN

Hepatitis C Virus (HCV) is a viral infection that causes liver inflammation. Annually, approximately 3.4 million cases of HCV are reported worldwide. A diagnosis of HCV in earlier stages helps to save lives. In the HCV review, the authors used a single ML-based prediction model in the current research, which encounters several issues, i.e., poor accuracy, data imbalance, and overfitting. This research proposed a Hybrid Predictive Model (HPM) based on an improved random forest and support vector machine to overcome existing research limitations. The proposed model improves a random forest method by adding a bootstrapping approach. The existing RF method is enhanced by adding a bootstrapping process, which helps eliminate the tree's minor features iteratively to build a strong forest. It improves the performance of the HPM model. The proposed HPM model utilizes a 'Ranker method' to rank the dataset features and applies an IRF with SVM, selecting higher-ranked feature elements to build the prediction model. This research uses the online HCV dataset from UCI to measure the proposed model's performance. The dataset is highly imbalanced; to deal with this issue, we utilized the synthetic minority over-sampling technique (SMOTE). This research performs two experiments. The first experiment is based on data splitting methods, K-fold cross-validation, and training: testing-based splitting. The proposed method achieved an accuracy of 95.89% for k = 5 and 96.29% for k = 10; for the training and testing-based split, the proposed method achieved 91.24% for 80:20 and 92.39% for 70:30, which is the best compared to the existing SVM, MARS, RF, DT, and BGLM methods. In experiment 2, the analysis is performed using feature selection (with SMOTE and without SMOTE). The proposed method achieves an accuracy of 41.541% without SMOTE and 96.82% with SMOTE-based feature selection, which is better than existing ML methods. The experimental results prove the importance of feature selection to achieve higher accuracy in HCV research.


Asunto(s)
Hepacivirus , Hepatitis C , Humanos , Bosques Aleatorios , Máquina de Vectores de Soporte , Algoritmos
9.
Curr Med Imaging ; 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37594157

RESUMEN

INTRODUCTION: Millions of people have been infected with COVID-19, which has spread quickly worldwide since the start of 2020, resulting in numerous fatalities. Identification of infected individuals is essential to control the spread of the virus. AIM: In this study, we propose a hybrid architecture that combines Convolutional Neural Networks (CNNs) with Recurrent Neural Networks (RNNs) and leverages transfer learning to enhance the accuracy of COVID-19 detection from X-ray images. METHOD: The proposed work utilizes 4 pre-trained CNN architectures, namely, InceptionnetV3, Densenet121, Inception-ResNet V2, and VGG19, to extract high-level features from the input X-ray images. These features are then fed into the second component, an RNN-based network, which captures the temporal dependencies within the extracted features. To evaluate the performance of the proposed architecture, a comprehensive dataset consisting of X-ray images from COVID-19 positive cases, non-COVID-19 pneumonia cases, and healthy individuals is used. Gradient class activation map (Grad-CAM) analysis has been applied to the obtained results to provide heat-map pictures specific to each class and coloured visualizations of the COVID-19-infected areas in CXR images. RESULT: Experimental results demonstrate that the proposed hybrid CNN-RNN architecture achieves promising results in COVID-19 detection from X-ray images. The model exhibits high accuracy, precision, recall, area under the receiver operating characteristics (ROC) curve (AUC), and F1-score, outperforming other state-of-the-art methods. CONCLUSION: The combination of CNNs and RNNs enables the model to effectively capture spatial and temporal information, leading to improved performance in COVID-19 detection. The proposed hybrid architecture with transfer learning from X-ray images provides a robust and efficient solution for COVID-19 detection. The model can potentially assist healthcare professionals in making accurate and timely diagnoses, thereby contributing to the global efforts to combat the COVID-19 pandemic. In the present work, VGG19-RNN architecture outperformed all other networks in terms of accuracy. The most effective training and validation accuracy for the VGG19-RNN architecture is 99% & 97.70%, respectively, and the loss was 0.02 & 0.09 at epoch 100.

10.
Sci Rep ; 12(1): 20876, 2022 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-36463244

RESUMEN

Technology is playing an important role is healthcare particularly as it relates to disease prevention and detection. This is evident in the COVID-19 era as different technologies were deployed to test, detect and track patients and ensure COVID-19 protocol compliance. The White Spot Disease (WSD) is a very contagious disease caused by virus. It is widespread among shrimp farmers due to its mode of transmission and source. Considering the growing concern about the severity of the disease, this study provides a predictive model for diagnosis and detection of WSD among shrimp farmers using visualization and machine learning algorithms. The study made use of dataset from Mendeley repository. Machine learning algorithms; Random Forest classification and CHAID were applied for the study, while Python was used for implementation of algorithms and for visualization of results. The results achieved showed high prediction accuracy (98.28%) which is an indication of the suitability of the model for accurate prediction of the disease. The study would add to growing knowledge about use of technology to manage White Spot Disease among shrimp farmers and ensure real-time prediction during and post COVID-19.


Asunto(s)
COVID-19 , Liquen Escleroso y Atrófico , Humanos , Animales , Agricultores , COVID-19/diagnóstico , Crustáceos , Alimentos Marinos
11.
World J Gastroenterol ; 28(46): 6551-6563, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36569269

RESUMEN

BACKGROUND: Liver disease indicates any pathology that can harm or destroy the liver or prevent it from normal functioning. The global community has recently witnessed an increase in the mortality rate due to liver disease. This could be attributed to many factors, among which are human habits, awareness issues, poor healthcare, and late detection. To curb the growing threats from liver disease, early detection is critical to help reduce the risks and improve treatment outcome. Emerging technologies such as machine learning, as shown in this study, could be deployed to assist in enhancing its prediction and treatment. AIM: To present a more efficient system for timely prediction of liver disease using a hybrid eXtreme Gradient Boosting model with hyperparameter tuning with a view to assist in early detection, diagnosis, and reduction of risks and mortality associated with the disease. METHODS: The dataset used in this study consisted of 416 people with liver problems and 167 with no such history. The data were collected from the state of Andhra Pradesh, India, through https://www.kaggle.com/datasets/uciml/indian-liver-patient-records. The population was divided into two sets depending on the disease state of the patient. This binary information was recorded in the attribute "is_patient". RESULTS: The results indicated that the chi-square automated interaction detection and classification and regression trees models achieved an accuracy level of 71.36% and 73.24%, respectively, which was much better than the conventional method. The proposed solution would assist patients and physicians in tackling the problem of liver disease and ensuring that cases are detected early to prevent it from developing into cirrhosis (scarring) and to enhance the survival of patients. The study showed the potential of machine learning in health care, especially as it concerns disease prediction and monitoring. CONCLUSION: This study contributed to the knowledge of machine learning application to health and to the efforts toward combating the problem of liver disease. However, relevant authorities have to invest more into machine learning research and other health technologies to maximize their potential.


Asunto(s)
Hepatopatías , Humanos , Resultado del Tratamiento , Hepatopatías/diagnóstico , Hepatopatías/terapia , India/epidemiología
12.
Front Public Health ; 10: 892371, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35570979

RESUMEN

Machine learning algorithms are excellent techniques to develop prediction models to enhance response and efficiency in the health sector. It is the greatest approach to avoid the spread of hepatitis C, especially injecting drugs, is to avoid these behaviors. Treatments for hepatitis C can cure most patients within 8 to 12 weeks, so being tested is critical. After examining multiple types of machine learning approaches to construct the classification models, we built an AI-based ensemble model for predicting Hepatitis C disease in patients with the capacity to predict advanced fibrosis by integrating clinical data and blood biomarkers. The dataset included a variety of factors related to Hepatitis C disease. The training data set was subjected to three machine-learning approaches and the validated data was then used to evaluate the ensemble learning-based prediction model. The results demonstrated that the proposed ensemble learning model has been observed ad more accurate compared to the existing Machine learning algorithms. The Multi-layer perceptron (MLP) technique was the most precise learning approach (94.1% accuracy). The Bayesian network was the second-most accurate learning algorithm (94.47% accuracy). The accuracy improved to the level of 95.59%. Hepatitis C has a significant frequency globally, and the disease's development can result in irreparable damage to the liver, as well as death. As a result, utilizing AI-based ensemble learning model for its prediction is advantageous in curbing the risks and improving treatment outcome. The study demonstrated that the use of ensemble model presents more precision or accuracy in predicting Hepatitis C disease instead of using individual algorithms. It also shows how an AI-based ensemble model could be used to diagnose Hepatitis C disease with greater accuracy.


Asunto(s)
Inteligencia Artificial , Hepatitis C , Teorema de Bayes , Hepatitis C/diagnóstico , Humanos , Aprendizaje Automático , Redes Neurales de la Computación
13.
J Healthc Eng ; 2021: 5196000, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34912534

RESUMEN

The use of machine learning algorithms for facial expression recognition and patient monitoring is a growing area of research interest. In this study, we present a technique for facial expression recognition based on deep learning algorithm: convolutional neural network (ConvNet). Data were collected from the FER2013 dataset that contains samples of seven universal facial expressions for training. The results show that the presented technique improves facial expression recognition accuracy without encoding several layers of CNN that lead to a computationally costly model. This study proffers solutions to the issues of high computational cost due to the implementation of facial expression recognition by providing a model close to the accuracy of the state-of-the-art model. The study concludes that deep l\earning-enabled facial expression recognition techniques enhance accuracy, better facial recognition, and interpretation of facial expressions and features that promote efficiency and prediction in the health sector.


Asunto(s)
Aprendizaje Profundo , Reconocimiento Facial , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA