Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39252416

RESUMEN

Lipid mediators, which include specialized pro-resolving mediators and classic eicosanoids, are pivotal in both initiating and resolving inflammation. The regulation of these molecules determines whether inflammation resolves naturally or persists. However, our understanding of how these mediators are regulated over time in various inflammatory contexts is limited. This gap hinders our grasp of the mechanisms underlying the disease onset and progression. Due to their localized action and low endogenous levels in many tissues, developing robust and highly sensitive methodologies is imperative for assessing their endogenous regulation in diverse inflammatory settings. These methodologies will help us gain insight into their physiological roles. Here, we establish methodologies for extracting, identifying, and quantifying these mediators. Using our methods, we identified a total of 37 lipid mediators. Additionally, by employing a reverse-phase HPLC method, we successfully separated both double-bond and chiral isomers of select lipid mediators, including Lipoxin (LX) A4, 15-epi-LXA4, Protectin (PD) D1, PDX, and 17R-PD1. Validation of the method was performed in both solvent and surrogate matrix for linearity of the standard curves, lower limits of quantitation (LLOQ), accuracy, and precision. Results from these studies demonstrated that linearity was good with r2 values > 0.98, and LLOQ for the mediators ranged from 0.01 to 0.9 pg in phase and from 0.1 to 8.5 pg in surrogate matrix. The relative standard deviation (RSD) for inter- and intraday precision in solvent ranged from 5% to 12% at low, intermediate, and high concentrations, whereas the RSD for the inter- and intraday variability in the accuracy ranged from 95% to 87% at low to high concentrations. The recovery in biological matrices (plasma and serum) for the internal standards used ranged from 60% to 118%. We observed a marked ion suppression for molecules evaluated in negative ionization mode, while there was an ion enhancement effect by the matrix for molecules evaluated in positive ionization mode. Comparison of the integration algorithms, namely, AutoPeak and MQ4, and approaches for calculating signal-to-noise ratios (i.e., US Pharmacopeia, relative noise, peak to peak, and standard deviation) demonstrated that different integration algorithms tested had little influence on signal-to-noise ratio calculations. In contrast, the method used to calculate the signal-to-noise ratio had a more significant effect on the results, with the relative noise approach proving to be the most robust. The methods described herein provide a platform to study the SPM and classic eicosanoids in biological tissues that will help further our understanding of disease mechanisms.

2.
Blood ; 144(4): 420-434, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38718314

RESUMEN

ABSTRACT: The leucine-rich repeat-containing G-protein-coupled receptor 6 (LGR6) was recently identified as the cognate receptor for the proresolving mediator maresin 1 (MaR1). To address the biological role of LGR6 in humans, we investigated the functional impact of a genetic variant in the gene encoding for LGR6, which is predicted to lead to a frameshift mutation in one of the receptor isoforms, on both receptor expression and immune cell responses. In neutrophils, monocytes, and natural killer (NK) cells from volunteers homozygous for this variant, we found a significant downregulation in the expression of LGR6 when compared with controls without the variant; whereas the LGR6 expression was essentially similar in monocyte-derived macrophages and CD8+ T cells. Functionally, loss of LGR6 expression was linked with a decreased ability of neutrophils and monocytes to phagocytose bacteria. We observed an increase in neutrophil chemotaxis and leukotriene B4 production and increased expression of activation markers, including markers for platelet-leukocyte phagocyte heterotypic aggregates, such as CD41, in neutrophils and monocytes from the variant group. Using data from the UK Biobank, we found that at a population level the rs4266947 variant, which is in high linkage disequilibrium with rs74355478, was associated with a higher incidence of viral infections. Intriguingly, neutrophils, NK cells, and CD8+ T cells from volunteers with the LGR6 variant displayed altered viral responses when stimulated with Toll-like receptor 3 (TLR3), TLR7/TLR8, and TLR9 agonists. Together, these findings shed new light on the cell type-specific regulation of LGR6 expression and the role of this receptor in directing host immune responses.


Asunto(s)
Mutación del Sistema de Lectura , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/genética , Virosis/inmunología , Virosis/genética , Masculino , Femenino , Fagocitosis , Neutrófilos/metabolismo , Neutrófilos/inmunología , Leucocitos/metabolismo , Leucocitos/inmunología , Monocitos/metabolismo , Monocitos/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Persona de Mediana Edad , Adulto , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo
3.
FASEB J ; 38(10): e23675, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38801406

RESUMEN

Resolution of inflammation is the cellular and molecular process that protects from widespread and uncontrolled inflammation and restores tissue function in the aftermath of acute immune events. This process is orchestrated by specialized pro-resolving mediators (SPM), a class of bioactive lipids able to reduce immune activation and promote removal of tissue debris and apoptotic cells by macrophages. Although SPMs are the lipid class that has been best studied for its role in facilitating the resolution of self-limited inflammation, a number of other lipid signals, including endocannabinoids, also exert protective immunomodulatory effects on immune cells, including macrophages. These observations suggest that endocannabinoids may also display pro-resolving actions. Interestingly, the endocannabinoid anandamide (AEA) is not only known to bind canonical type 1 and type 2 cannabinoid receptors (CB1 and CB2) but also to engage SPM-binding receptors such as GPR18. This suggests that AEA may also contribute to the governing of resolution processes. In order to interrogate this hypothesis, we investigated the ability of AEA to induce pro-resolving responses by classically-activated primary human monocyte-derived macrophages (MoDM). We found that AEA, at nanomolar concentration, enhances efferocytosis in MoDMs in a CB2- and GPR18-dependent manner. Using lipid mediator profiling, we also observed that AEA modulates SPM profiles in these cells, including levels of resolvin (Rv)D1, RvD6, maresin (MaR)2, and RvE1 in a CB2-dependent manner. AEA treatment also modulated the gene expression of SPM enzymes involved in both the formation and further metabolism of SPM such as 5-lipoxygenase and 15-Prostaglandin dehydrogenase. Our findings show, for the first time, a direct effect of AEA on the regulation of pro-resolving pathways in human macrophages. They also provide new insights into the complex interactions between different lipid pathways in activation of pro-resolving responses contributing to the reestablishment of homeostasis in the aftermath of acute inflammation.


Asunto(s)
Ácidos Araquidónicos , Endocannabinoides , Macrófagos , Alcamidas Poliinsaturadas , Receptor Cannabinoide CB2 , Receptores Acoplados a Proteínas G , Humanos , Endocannabinoides/metabolismo , Endocannabinoides/farmacología , Receptor Cannabinoide CB2/metabolismo , Receptor Cannabinoide CB2/genética , Alcamidas Poliinsaturadas/farmacología , Alcamidas Poliinsaturadas/metabolismo , Ácidos Araquidónicos/farmacología , Ácidos Araquidónicos/metabolismo , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Inflamación/metabolismo , Células Cultivadas , Transducción de Señal/efectos de los fármacos , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/metabolismo , Araquidonato 5-Lipooxigenasa/metabolismo
4.
Biomed Pharmacother ; 174: 116564, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608525

RESUMEN

During resolution of inflammation, specialized proresolving mediators (SPMs), including resolvins, are produced to restore tissue homeostasis. We hypothesized that there might be a dysregulation of SPMs pathways in pathological vascular remodeling and that resolvin D2 (RvD2) might prevent vascular remodeling and contractile and endothelial dysfunction in a model of obesity and hypertension. In aortic samples of patients with or without abdominal aortic aneurysms (AAA), we evaluated gene expression of enzymes involved in SPMs synthesis (ALOXs), SPMs receptors and pro-inflammatory genes. In an experimental model of aortic dilation induced by high fat diet (HFD, 60%, eighteen weeks) and angiotensin II (AngII) infusion (four weeks), we studied the effect of RvD2 administration in aorta and small mesenteric arteries structure and function and markers of inflammation. In human macrophages we evaluated the effects of AngII and RvD2 in macrophages function and SPMs profile. In patients, we found positive correlations between AAA and obesity, and between AAA and expression of ALOX15, RvD2 receptor GPR18, and pro-inflammatory genes. There was an inverse correlation between the expression of aortic ALOX15 and AAA growth rate. In the mice model, RvD2 partially prevented the HFD plus AngII-induced obesity and adipose tissue inflammation, hypertension, aortic and mesenteric arteries remodeling, hypercontratility and endothelial dysfunction, and the expression of vascular proinflammatory markers and cell apoptosis. In human macrophages, RvD2 prevented AngII-induced impaired efferocytosis and switched SPMs profile. RvD2 might represent a novel protective strategy in preventing vascular damage associated to hypertension and obesity likely through effects in vascular and immune cells.


Asunto(s)
Ácidos Docosahexaenoicos , Hipertensión , Ratones Endogámicos C57BL , Obesidad , Remodelación Vascular , Animales , Masculino , Humanos , Ácidos Docosahexaenoicos/farmacología , Hipertensión/metabolismo , Hipertensión/tratamiento farmacológico , Obesidad/complicaciones , Obesidad/metabolismo , Remodelación Vascular/efectos de los fármacos , Ratones , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Dieta Alta en Grasa/efectos adversos , Angiotensina II , Aneurisma de la Aorta Abdominal/patología , Aneurisma de la Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/tratamiento farmacológico , Mediadores de Inflamación/metabolismo , Ratones Obesos , Vasoconstricción/efectos de los fármacos , Inflamación/patología , Inflamación/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Modelos Animales de Enfermedad
5.
Nat Commun ; 15(1): 975, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316794

RESUMEN

While cardiovascular disease (CVD) is one of the major co-morbidities in patients with rheumatoid arthritis (RA), the mechanism(s) that contribute to CVD in patients with RA remain to be fully elucidated. Herein, we observe that plasma concentrations of 13-series resolvin (RvT)4 negatively correlate with vascular lipid load in mouse inflammatory arthritis. Administration of RvT4 to male arthritic mice fed an atherogenic diet significantly reduces atherosclerosis. Assessment of the mechanisms elicited by this mediator demonstrates that RvT4 activates cholesterol efflux in lipid laden macrophages via a Scavenger Receptor class B type 1 (SR-BI)-Neutral Cholesterol Ester Hydrolase-dependent pathway. This leads to the reprogramming of lipid laden macrophages yielding tissue protection. Pharmacological inhibition or knockdown of macrophage SR-BI reverses the vasculo-protective activities of RvT4 in vitro and in male mice in vivo. Together these findings elucidate a RvT4-SR-BI centered mechanism that orchestrates macrophage responses to limit atherosclerosis during inflammatory arthritis.


Asunto(s)
Artritis , Aterosclerosis , Humanos , Masculino , Ratones , Animales , Colesterol/metabolismo , Macrófagos/metabolismo , Aterosclerosis/metabolismo , Transporte Biológico , Artritis/metabolismo
8.
Adv Sci (Weinh) ; 11(7): e2304690, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38064171

RESUMEN

Clearance of multiple rounds of apoptotic cells (ACs) through continual efferocytosis is critical in the maintenance of organ function, the resolution of acute inflammation, and tissue repair. To date, little is known about the nature of mechanisms and factors that govern this fundamental process. Herein, the authors reported that breakdown of ACs leads to upregulation of 12-lipoxygenase in macrophages. This enzyme converts docosahexaenoic acid to maresin conjugates in tissue regeneration (MCTRs). The levels of these autacoids are elevated at sites of high apoptotic burden in vivo and in efferocytosing macrophages in vitro. Abrogation of MCTR production using genetic approaches limits the ability of macrophages to perform continual efferocytosis both in vivo and in vitro, an effect that is rescued by add-back of MCTRs. Mechanistically, MCTR-mediated priming of macrophages for continual efferocytosis is dependent on alterations in Rac1 signalling and glycolytic metabolism. Inhibition of Rac1 abolishes the ability of MCTRs to increase glucose uptake and efferocytosis in vitro, whereas inhibition of glycolysis limits the MCTR-mediated increases in efferocytosis and tissue repair. Together, these findings demonstrate that upregulation of MCTRs by efferocytosing macrophages plays a central role in the regulation of continual efferocytosis via the autocrine and paracrine modulation of metabolic pathways.


Asunto(s)
Eferocitosis , Fagocitosis , Macrófagos/metabolismo , Transducción de Señal , Glucólisis
9.
Front Immunol ; 14: 1248547, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38035115

RESUMEN

Activation of pancreatic stellate cells (PSCs) to cancer-associated fibroblasts (CAFs) is responsible for the extensive desmoplastic reaction observed in PDAC stroma: a key driver of pancreatic ductal adenocarcinoma (PDAC) chemoresistance leading to poor prognosis. Specialized pro-resolving mediators (SPMs) are prime modulators of inflammation and its resolution, traditionally thought to be produced by immune cells. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based lipid mediator profiling PSCs as well as primary human CAFs express enzymes and receptors to produce and respond to SPMs. Human PSC/CAF SPM secretion profile can be modulated by rendering these cells activated [transforming growth factor beta (TGF-ß)] or quiescent [all-trans retinoic acid (ATRA)]. ATRA-induced nuclear translocation of arachidonate-15-lipoxygenase (ALOX15) was linked to increased production of n-3 docosapentaenoic acid-derived Resolvin D5 (RvD5n-3 DPA), among other SPMs. Inhibition of RvD5n-3 DPA formation increases cancer cell invasion, whereas addback of this molecule reduced activated PSC-mediated cancer cell invasion. We also observed that circulating concentrations of RvD5n-3 DPA levels were decreased in peripheral blood of metastatic PDAC patients when compared with those measured in plasma of non-metastatic PDAC patients. Together, these findings indicate that RvD5n-3 DPA may regulate cancer-stroma cross-talk and invasion.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Araquidonato 15-Lipooxigenasa/metabolismo , Células Estrelladas Pancreáticas/metabolismo , Células Estrelladas Pancreáticas/patología , Cromatografía Liquida , Espectrometría de Masas en Tándem , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Tretinoina/metabolismo , Invasividad Neoplásica/patología
11.
Pharmacol Res ; 198: 107005, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37992916

RESUMEN

AIMS: The cardio-protective and immuno-regulatory properties of RTP-026, a synthetic peptide that spans the Annexin-A1 (AnxA1) N-terminal region, were tested in rat acute myocardial infarction. METHODS AND RESULTS: In vitro, selective activation of formyl-peptide receptor type 2 (FPR2) by RTP-026 occurred with apparent EC50 in the 10-30 nM range. With human primary cells, RTP-026 counteracted extension of neutrophil life-span and augmented phagocytosis of fluorescent E.coli by blood myeloid cells. An in vivo model of rat acute infarction was used to quantify tissue injury and phenotype immune cells in myocardium and blood. The rat left anterior descending coronary artery was occluded and then reopened for 2-hour or 24-hour reperfusion. For the 2-hour reperfusion protocol, RTP-026 (25-500 µg/kg; given i.v. at the start of reperfusion) significantly reduced infarct size by ∼50 %, with maximal efficacy at 50 µg/kg. Analyses of cardiac immune cells showed that RTP-026 reduced neutrophil and classical monocyte recruitment to the damaged heart. In the blood, RTP-026 (50 µg/kg) attenuated activation of neutrophils and monocytes monitored through CD62L and CD54 expression. Modulation of vascular inflammation by RTP-026 was demonstrated by reduction in plasma levels of mediators like TNF-α, IL-1ß, KC, PGE2 and PGF2α⊡ For the 24-hour reperfusion protocol, RTP-026 (30 µg/kg given i.v. at 0, 3 and 6 h reperfusion) reduced necrotic myocardium by ∼40 %. CONCLUSIONS: RTP-026 modulate immune cell responses and decreases infarct size of the heart in preclinical settings. Tempering over-exuberant immune cell activation by RTP-026 is a suitable approach to translate the biology of AnxA1 for therapeutic purposes.


Asunto(s)
Anexina A1 , Infarto del Miocardio , Ratas , Animales , Humanos , Anexina A1/farmacología , Péptidos/metabolismo , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Corazón , Neutrófilos/metabolismo
12.
J Nat Prod ; 86(11): 2546-2553, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-37879110

RESUMEN

The methyl ester of resolvin D5n-3 DPA, a lipid mediator biosynthesized from the omega-3 fatty acid n-3 docosapentaenoic acid, was stereoselectively prepared in 8% yield over 12 steps (longest linear sequence). The key steps for the introduction of the two stereogenic secondary alcohols were an organocatalyzed oxyamination and the Midland Alpine borane reduction. For the assembly of the carbon chain, the Sonogashira cross-coupling reaction and the Takai olefination were utilized. The physical properties, including retention time in liquid chromatography and tandem mass spectra, of the synthetic material were matched against material from human peripheral blood and mouse infectious exudates. Synthetic RvD5n-3 DPA, obtained just prior to biological experiments, displayed potent leukocyte-directed activities, upregulating the ability of neutrophils and macrophages to phagocytose bacteria, known as hallmark bioactions of specialized pro-resolving endogenous mediators.


Asunto(s)
Ácidos Docosahexaenoicos , Macrófagos , Animales , Ratones , Humanos , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/química , Fagocitosis , Neutrófilos , Antiinflamatorios/farmacología , Antiinflamatorios/química , Cromatografía Liquida , Inflamación
14.
Mol Metab ; 74: 101749, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37271337

RESUMEN

OBJECTIVE: Maresin 1 (MaR1) is a docosahexaenoic acid-derived proresolving lipid mediator with insulin-sensitizing and anti-steatosis properties. Here, we aim to unravel MaR1 actions on brown adipose tissue (BAT) activation and white adipose tissue (WAT) browning. METHODS: MaR1 actions were tested in cultured murine brown adipocytes and in human mesenchymal stem cells (hMSC)-derived adipocytes. In vivo effects of MaR1 were tested in diet-induced obese (DIO) mice and lean WT and Il6 knockout (Il6-/-) mice. RESULTS: In cultured differentiated murine brown adipocytes, MaR1 reduces the expression of inflammatory genes, while stimulates glucose uptake, fatty acid utilization and oxygen consumption rate, along with the upregulation of mitochondrial mass and genes involved in mitochondrial biogenesis and function and the thermogenic program. In Leucine Rich Repeat Containing G Protein-Coupled Receptor 6 (LGR6)-depleted brown adipocytes using siRNA, the stimulatory effect of MaR1 on thermogenic genes was abrogated. In DIO mice, MaR1 promotes BAT remodeling, characterized by higher expression of genes encoding for master regulators of mitochondrial biogenesis and function and iBAT thermogenic activation, together with increased M2 macrophage markers. In addition, MaR1-treated DIO mice exhibit a better response to cold-induced BAT activation. Moreover, MaR1 induces a beige adipocyte signature in inguinal WAT of DIO mice and in hMSC-derived adipocytes. MaR1 potentiates Il6 expression in brown adipocytes and BAT of cold exposed lean WT mice. Interestingly, the thermogenic properties of MaR1 were abrogated in Il6-/- mice. CONCLUSIONS: These data reveal MaR1 as a novel agent that promotes BAT activation and WAT browning by regulating thermogenic program in adipocytes and M2 polarization of macrophages. Moreover, our data suggest that LGR6 receptor is mediating MaR1 actions on brown adipocytes, and that IL-6 is required for the thermogenic effects of MaR1.


Asunto(s)
Tejido Adiposo Pardo , Ácidos Docosahexaenoicos , Ratones , Humanos , Animales , Tejido Adiposo Pardo/metabolismo , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/metabolismo , Interleucina-6/metabolismo , Tejido Adiposo Blanco/metabolismo , Adipocitos Marrones/metabolismo
17.
EBioMedicine ; 89: 104468, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36791659

RESUMEN

BACKGROUND: Persons with HIV (PWH) have an increased risk of cardiovascular disease (CVD) compared to HIV-seronegative individuals (SN). Inflammation contributes to this risk but the role of lipid mediators, with central roles in inflammation, in HIV infection remain to be established; further aspirin reduces CVD risk in the general population through production of some of these anti-inflammatory lipid mediators, but they have not been studied in PWH. METHODS: We evaluated the relationship between plasma lipid mediators (i.e. 50 lipid mediators including classic eicosanoids and specialized pro-resolving mediators (SPMs)) and HIV status; and the impact of aspirin in PWH on regulating these autacoids. Plasma samples were obtained from 110 PWH receiving antiretroviral therapy (ART) from a randomized trial of aspirin (ACTG-A5331) and 107 matched SN samples (MACS-WIHS Combined Cohort). FINDINGS: PWH had lower levels of arachidonic acid-derived pro-inflammatory prostaglandins (PGs: PGE2 and PGD2) and thromboxanes (Tx: TxB2), and higher levels of select pro-resolving lipid mediators (e.g. RvD4 and MaR2n-3 DPA) compared to SN. At the interval tested, aspirin intervention was observed to reduced PGs and Tx, and while we did not observe an increase in aspirin triggered mediators, we observed the upregulation of other SPM in aspirin treated PWH, namely MaR2n-3 DPA. INTERPRETATION: Together these observations demonstrate that plasma lipid mediators profiles, some with links to systemic inflammation and CVD risk, become altered in PWH. Furthermore, aspirin intervention did not increase levels of aspirin-triggered pro-resolving lipid mediators, consistent with other reports of an impaired aspirin response in PWH. FUNDING: NIH.


Asunto(s)
Enfermedades Cardiovasculares , Infecciones por VIH , Humanos , Aspirina , Eicosanoides , Inflamación , Mediadores de Inflamación
19.
Biochem Pharmacol ; 207: 115348, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36400250

RESUMEN

We recently found that the G protein coupled receptor GPR101 mediates the phagocyte-directed pro-resolving activities of RvD5n-3 DPA (n-3 docosapentaenoic acid-derived Resolvin D5). Herein, we investigated the endogenous role of this pro-resolving receptor in modulating macrophage biology using a novel mouse line where the expression of Gpr101 was conditionally deleted in macrophages (MacGpr101KO). Peritoneal macrophages obtained from naïve MacGpr101KO mice displayed a marked shift in the expression of phenotypic and activation markers, including the Interleukin (IL)-10 and IL-23 receptors. Loss of Gpr101 on macrophages was also associated with a significant disruption in their cellular metabolism and a decreased ability to migrate towards the chemoattractant Mcp-1. The alterations in macrophage phenotype observed in Gpr101 deficient macrophages were maintained following inflammatory challenge. This was linked with an increased inflammatory response in the Gpr101 deficient animals and a reduced ability of phagocytes, including macrophages, to clear bacteria. Loss of Gpr101 on macrophages disrupted host pro-resolving responses to zymosan challenge with MacGpr101KO mice exhibiting significantly higher neutrophil numbers and a delay in the resolution interval when compared with control mice. These observations were linked with a marked dysregulation in peritoneal lipid mediator concentrations in Gpr101 deficient mice, with a downregulation of pro-resolving mediators including MaR2n-3 DPA, Resolvin (Rv) D3 and RvE3. Together these findings identify Gpr101 as a novel regulator of both macrophage phenotype and function, modulating key biological activities in both limiting the propagation of inflammation and expediting its resolution.


Asunto(s)
Inflamación , Macrófagos , Receptores Acoplados a Proteínas G , Animales , Ratones , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/metabolismo , Inmunidad , Macrófagos/metabolismo , Fenotipo , Receptores Acoplados a Proteínas G/genética
20.
Hypertension ; 80(1): 84-96, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36337053

RESUMEN

BACKGROUND: Resolution of inflammation is orchestrated by specialized proresolving lipid mediators (SPMs), and this would be impaired in some cardiovascular diseases. Among SPMs, resolvins (Rv) have beneficial effects in cardiovascular pathologies, but little is known about their effect on cardiovascular damage in hypertension. METHODS: Aorta, small mesenteric arteries, heart, and peritoneal macrophages were taken from C57BL/6J mice, infused or not with angiotensin II (AngII; 1.44 mg/kg/day, 14 days) in presence or absence of resolvin D2 (RvD2) (100 ng/mice, every second day) starting 1 day before or 7 days after AngII infusion. RESULTS: Enzymes and receptors involved in SPMs biosynthesis and signaling were increased in aorta or heart from AngII-infused mice. We also observed a differential regulation of SPMs in heart from these mice. Preventive treatment with RvD2 partially avoided AngII-induced hypertension and protected the heart and large and small vessels against functional and structural alterations induced by AngII. RvD2 increased the availability of vasoprotective factors, modified SPMs profile, decreased cardiovascular fibrosis, and increased the infiltration of pro-resolving macrophages. When administered in hypertensive animals with established cardiovascular damage, RvD2 partially improved cardiovascular function and structure, decreased fibrosis, reduced the infiltration of neutrophils, and shifted macrophage phenotype toward a pro-resolving phenotype. CONCLUSIONS: There is a disbalance between proinflammatory and resolution mediators in hypertension. RvD2 protects cardiovascular function and structure when administered before and after the development of hypertension by modulating vascular factors, fibrosis and inflammation. Activating resolution mechanisms by treatment with RvD2 may represent a novel therapeutic strategy for the treatment of hypertensive cardiovascular disease.


Asunto(s)
Angiotensina II , Hipertensión , Ratones , Animales , Ratones Endogámicos C57BL , Hipertensión/inducido químicamente , Hipertensión/tratamiento farmacológico , Fibrosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA