Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
ACS Appl Nano Mater ; 6(18): 16201-16211, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37772265

RESUMEN

The control of surface wettability is a technological key aspect and usually poses considerable challenges connected to high cost, nanostructure, and durability, especially when aiming at surface patterning with high and extreme wettability contrast. This work shows a simple and scalable approach by using laser-induced graphene (LIG) and a locally inert atmosphere to continuously tune the wettability of a polyimide/LIG surface from hydrophilic to superhydrophobic (Φ âˆ¼ 160°). This is related to the reduced amount of oxygen on the LIG surface, influenced by the local atmosphere. Furthermore, the influence of the roughness pattern of LIG on the wettability is investigated. Both approaches are combined, and the influence of surface chemistry and roughness is discussed. Measurements of the roll-off angle show that LIG scribed in an inert atmosphere with a low roughness has the highest droplet mobility with a roll-off angle of ΦRO = (1.7 ± 0.3)°. The superhydrophobic properties of the samples were maintained for over a year and showed no degradation after multiple uses. Applications of surfaces with extreme wettability contrast in millifluidics and fog basking are demonstrated. Overall, the proposed processing allows for the continuous tuning and patterning of the surface properties of LIG in a very accessible fashion useful for "lab-on-chip" applications.

2.
ACS Appl Mater Interfaces ; 15(30): 35788-35814, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37471123

RESUMEN

The maskless and chemical-free conversion and patterning of synthetic polymer precursors into laser-induced graphene (LIG) via laser-induced pyrolysis is a relatively new but growing field. Bioderived precursors from lignocellulosic materials can also be converted to LIG, opening a path to sustainable and environmentally friendly applications. This review is designed as a starting point for researchers who are not familiar with LIG and/or who wish to switch to sustainable bioderived precursors for their applications. Bioderived precursors are described, and their performances (mainly crystallinity and sheet resistance of the obtained LIG) are compared. The three main fields of application are reviewed: supercapacitors and electrochemical and physical sensors. The key advantages and disadvantages of each precursor for each application are discussed and compared to those of a benchmark of polymer-derived LIG. LIG from bioderived precursors can match, or even outperform, its synthetic analogue and represents a viable and sometimes better alternative, also considering its low cost and biodegradability.

3.
ACS Appl Mater Interfaces ; 13(26): 30245-30260, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34167302

RESUMEN

Notwithstanding its relatively recent discovery, graphene has gone through many evolution steps and inspired a multitude of applications in many fields, from electronics to life science. The recent advancements in graphene production and patterning, and the inclusion of two-dimensional (2D) graphenic materials in three-dimensional (3D) superstructures, further extended the number of potential applications. In this Review, we focus on laser-induced graphene (LIG), an intriguing 3D porous graphenic material produced by direct laser scribing of carbonaceous precursors, and on its applications in chemical sensors and biosensors. LIG can be shaped in different 3D forms with a high surface-to-volume ratio, which is a valuable characteristic for sensors that typically rely on phenomena occurring at surfaces and interfaces. Herein, an overview of LIG, including synthesis from various precursors, structure, and characteristic properties, is first provided. The discussion focuses especially on transport and surface properties, and on how these can be controlled by tuning the laser processing. Progresses and trends in LIG-based chemical sensors are then reviewed, discussing the various transduction mechanisms and different LIG functionalization procedures for chemical sensing. A comparative evaluation of sensors performance is then provided. Finally, sensors for glucose detection are reviewed in more detail, since they represent the vast majority of LIG-based chemical sensors.

4.
ACS Appl Polym Mater ; 3(4): 1809-1818, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33860232

RESUMEN

The method of converting insulating polymers into conducting 3D porous graphene structures, so-called laser-induced graphene (LIG) with a commercially available CO2 laser engraving system in an ambient atmosphere, resulted in several applications in sensing, actuation, and energy. In this paper, we demonstrate a combination of LIG and a smart hydrogel (poly(N-vinylcaprolactam)-pNVCL) for multiresponsive actuation in a humid environment. Initiated chemical vapor deposition (iCVD) was used to deposit a thin layer of the smart hydrogel onto a matrix of poly(dimethylsiloxane) (PDMS) and embedded LIG tracks. An intriguing property of smart hydrogels, such as pNVCL, is that the change of an external stimulus (temperature, pH, magnetic/electric fields) induces a reversible phase transition from a swollen to a collapsed state. While the active smart hydrogel layer had a thickness of only 300 nm (compared to the 500 times thicker actuator matrix), it was possible to induce a reversible bending of over 30° in the humid environment triggered by Joule heating. The properties of each material were investigated by means of scanning electron microscopy (SEM), Raman spectroscopy, tensile testing, and ellipsometry. The actuation performances of single-responsive versions were investigated by creating a thermoresponsive PDMS/LIG actuator and a humidity-responsive PDMS/pNVCL actuator. These results were used to tune the properties of the multiresponsive PDMS/LIG/pNVCL actuator. Furthermore, its self-sensing capabilities were investigated. By getting a feedback from the piezoresistive change of the PMDS/LIG composite, the bending angle could be tracked by measuring the change in resistance. To highlight the possibilities of the processing techniques and the combination of materials, a demonstrator in the shape of an octopus with four independently controllable arms was developed.

5.
ACS Appl Mater Interfaces ; 12(17): 19855-19865, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32249561

RESUMEN

The conversion of various polymer substrates into laser-induced graphene (LIG) with a CO2 laser in ambient condition is recently emerging as a simple method for obtaining patterned porous graphene conductors, with a myriad of applications in sensing, actuation, and energy. In this paper, a method is presented for embedding porous LIG (LIG-P) or LIG fibers (LIG-F) into a thin (about 50 µm) and soft medical grade polyurethane (MPU) providing excellent conformal adhesion on skin, stretchability, and maximum breathability to boost the development of various unperceivable monitoring systems on skin. The effect of varying laser fluence and geometry of the laser scribing on the LIG micro-nanostructure morphology and on the electrical and electromechanical properties of LIG/MPU composites is investigated. A peculiar and distinct behavior is observed for either LIG-P or LIG-F. Excellent stretchability without permanent impairment of conductive properties is revealed up to 100% strain and retained after hundreds of cycles of stretching tests. A distinct piezoresistive behavior, with an average gauge factor of 40, opens the way to various potential strain/pressure sensing applications. A novel method based on laser scribing is then introduced for providing vertical interconnect access (VIA) into LIG/MPU conformable epidermal sensors. Such VIA enables stable connections to an external measurement device, as this represents a typical weakness of many epidermal devices so far. Three examples of minimally invasive LIG/MPU epidermal sensing proof of concepts are presented: as electrodes for electromyographic recording on limb and as piezoresistive sensors for touch and respiration detection on skin. Long-term wearability and functioning up to several days and under repeated stretching tests is demonstrated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA