Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Ying Yong Sheng Tai Xue Bao ; 34(10): 2619-2628, 2023 Oct.
Artículo en Chino | MEDLINE | ID: mdl-37897268

RESUMEN

Determining the differences of water use characteristics of a tree species with different origins (natural forests and introduced plantations) is significantly important for forest sustainable management. Pinus sylvestris var. mongolica is an important tree species of afforestation in the 'Three North' project in China. In this study, with Pinus sylvestris var. mongolica from two origins, we monitored the sap flow velocity of sapwood (Js) of trees by thermal dissipation sap flow probes, and analyzed the relationship between water transportation and the environmental factors during the growing season. The results showed that under the typical sunny day, daily sap flow velocity (Js-daily) of trees from plantations was significantly higher than that from natural forests. The mean value of Js-daily was 132.98 and 114.86 cm·d-1 for the two origins, respectively. Trees from plantations showed higher water transportation potential than natural forests. Vapor pressure deficit (VPD) mainly showed the driving effect on the water use process of trees from natural forests. In the plantations, there was an obvious threshold effect, and the inflection point of VPD was about 1.91 kPa, with the boundary function of Js-hour increased to the maximum of 17.88 cm·h-1. Atmospheric driven transpiration potential (Js-hour/VPD) of P. sylvestris var. mongolica trees with two origins decreased with the aggravation of soil drought, but sensitivity to drought was higher in the plantations than in the natural forests, suggesting the strong ability of Pinus sylvestris var. mongolica to regulate water use process.


Asunto(s)
Pinus sylvestris , Pinus , Pinus sylvestris/fisiología , Agua/análisis , Bosques , Árboles , Suelo , China
2.
Ying Yong Sheng Tai Xue Bao ; 31(3): 829-836, 2020 Mar.
Artículo en Chino | MEDLINE | ID: mdl-32537978

RESUMEN

The variations of water potential gradients through the soil-plant-atmosphere continuum (SPAC) are of great significance to reveal the responses of plant water use to environmental changes. We conducted a continuous experiment to monitor the potentials in the near-canopy atmosphere (Ψair), soil (Ψsoil) and plant xylems (Ψstem) during the growing season in an apple orchard located in the Loess Plateau. The results showed that the average Ψstem during the growing season ranged from -0.24 to -2.0 MPa, with a mean value of -0.57 MPa. The average water potential gradient in soil-plant-atmosphere system was 1:9.8:1155 (Ψsoil:Ψstem:Ψair). We found a significant positive linear correlation between the Ψstem:Ψsoil gradient and volumetric soil water content (VWC, %). The Ψstem was more strongly correlated with Ψsoil than Ψair. Moreover, the sensitivity of Ψstem to Ψsoil decreased when Ψsoil was lower than -0.08 MPa which corresponded to VWC=17%, 0.56 times of field capacity. This was reflected by the increased linearity between Ψair /Ψstem and Ψsoil as Ψsoil decreased. There was a threshold effect for the relationship between Ψair and Ψstem. That is, the Ψstem in a day increased with the increasing of Ψair before the latter reached -69 MPa, after which the Ψstem decreased. The decline of soil water content caused an obvious decrease in water potential gradient through the SPAC system, and the threshold effect existed when VWC was below 17%. The results provide a basis for understanding the mechanisms of plant water in response to soil and atmospheric drought.


Asunto(s)
Malus , Suelo , China , Sequías , Agua
3.
Ying Yong Sheng Tai Xue Bao ; 30(3): 823-831, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30912374

RESUMEN

To clarify the effects of environmental factors on transpiration process of apple trees in rain-fed ecosystem, the dynamics of sap flow in apple trees from Loess Plateau area in western Shanxi Province of China were monitored using the thermal diffusion technique. Meanwhile, environmental factors including meteorological elements and soil moisture content were measured. The results showed that both net solar radiation (Rn) and atmospheric vapor deficit (VPD) were closely correlated with sap flow rate (Js), as the main ones among all the measured environmental factors. At both hourly and daily scales, the cumulative variances of the three principal components of the environmental factor were above 86%. The first principal component contained VPD and Rn, and explained the variance of over 52% (at hour scale) and 63% (at daily scale), which could be classified as the evaporation demand index (EDI) and as the key comprehensive environmental varia-bles affecting tree sap flow. The second principal component mainly included soil moisture content (SWC) and other factors, which were referred to the soil water and heat supply index. The third principal component mainly included wind speed and other factors, and could be classified into the hydrothermal dissipation index. At the scale of hourly or daily, the response of Js to EDI showed a significant exponential growth relationship. At the hourly time scale, Js of apple trees could be accurately modelled based on the first principal component EDI (R2=0.72). At the daily scale, Js of apple trees could be better modelled based on potential evapotranspiration (ET0) (R2=0.88). Our results were of great significance for clarifying the responses of water transport in apple tree to environmental factors, estimating water consumption of apple tree based on meteorological factors, as well as directing orchard water management.


Asunto(s)
Malus , China , Transpiración de Plantas , Lluvia , Suelo , Agua
4.
Ying Yong Sheng Tai Xue Bao ; 29(7): 2339-2346, 2018 Jul.
Artículo en Chino | MEDLINE | ID: mdl-30039673

RESUMEN

The stem sap flow rate of Haloxylon ammodendron plantation in the Minqin oasis-desert ectone was measured by the thermal dissipation probe (TDP). A cross-correlation analysis was used to estimate the time lag between the stem sap flow and the environmental factors influencing transpiration, including photosynthetically active radiation (PAR) and water vapor pressure deficit (VPD). The results showed that the stem sap flow rate of H. ammodendron had substantial seasonal variation, with the monthly average sap flow being the highest in June and the lowest in August. There was an obvious time lag between the stem sap flow of H. ammodendron and PAR and VPD. The stem sap flow was lagged behind PAR for 80 min but it was ahead of VPD for 114 min. Additionally, the time lag exhibited significant difference among different months during the growth season from May to September. The sap flow of H. ammodendron was more dependent on the variation of PAR on the daily scale than VPD, but it was more closely related to VPD during the day time. The time lag between the stem sap flow and PAR/VPD had no significant correlation with the tree factors (including plant height, ground diameter, diameter at 50 cm height, under branch height, canopy size) and the nocturnal sap flow.


Asunto(s)
Chenopodiaceae/fisiología , Tallos de la Planta/fisiología , China , Clima Desértico , Transpiración de Plantas , Estaciones del Año , Árboles , Agua
5.
Ying Yong Sheng Tai Xue Bao ; 25(9): 2501-10, 2014 Sep.
Artículo en Chino | MEDLINE | ID: mdl-25757298

RESUMEN

Sap flow of tree trunk is very important to reflect the dynamics of physiological activities, as well as to estimate the water consumption of individual plant. In the present study, we used the thermal dissipation technique to monitor the sap flow velocity (J) at four depth loci (i. e. 2 cm, 3 cm, 5 cm, 8 cm) of three Populus gansuensis trees (30 year-old) in Minqin Oasis for two consecutive growing seasons. The results showed that there were significant differences among J values at four depth loci under tree trunk cambium. J value at the 3 cm depth locus (J3) of the tree trunk was the highest, and then in sequences, were 2 cm, 5 cm and 8 cm depth loci (J2, J5 and J8). J value (J3) on typical sunny days in June with the highest atmospheric potential evapotranspiration (ET0) was up to 28.53 g · cm(-2) · h(-1), which was 1.42, 2.74 and 4.4 times of J2, J5 and J8, respectively. In the process of diurnal variation of sap flow velocity, the peak value time of J at the four depth loci of the tree trunk was different, but the differences among them were within 20 min. Furthermore, the peak value time of sap flow velocity was very different to that of solar radiation (Rs) and air vapour pressure deficit (VPD). The time lag between J and Rs was from 55 to 88 min on typical sunny days during the main growing seasons (from June to August), and, positively related to the depth of the locus under tree trunk cambium, while the time lag between J and VPD reached 60-96 min, and was negatively related to the depth of the locus. The seasonal variation patterns of J were consistent with ET0. With the increase of tree physiological activities, there was a trend that the major water transportation layer extended to the interior sapwood. The most important meteorological factor was the solar radiation, which primarily drove sap flow at different depths of tree trunk. However, the secondary factor changed along with the depth, and VPD became increasingly important with increasing the depth.


Asunto(s)
Transpiración de Plantas , Populus/fisiología , Ritmo Circadiano , Estaciones del Año , Árboles/fisiología , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA