Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Small ; : e2307722, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38054783

RESUMEN

The theoretical capacity of pristine silicon as anodes for lithium-ion batteries (LIBs) can reach up to 4200 mAh g-1 , however, the low electrical conductivity and the huge volume expansion limit their practical application. To address this challenge, a precursor strategy has been explored to induce the curling of graphene oxide (GO) flakes and the enclosing of Si nanoparticles by selecting protonated chitosan as both assembly inducer and carbon precursor. The Si nanoparticles are dispersed first in a slurry of GO by ball milling, then the resulting dispersion is dried by a spray drying process to achieve instantaneous solution evaporation and compact encapsulation of silicon particles with GO. An Al2 O3 layer is constructed on the surface of Si@rGO@C-SD composites by the atomic layer deposition method to modify the solid electrolyte interface. This strategy enhances obviously the electrochemical performance of the Si as anode for LIBs, including excellent long-cycle stability of 930 mAh g-1 after 1000 cycles at 1000 mA g-1 , satisfied initial Coulomb efficiency of 76.7%, and high rate ability of 806 mAh g-1 at 5000 mA g-1 . This work shows a potential solution to the shortcomings of Si-based anodes and provides meaningful insights for constructing high-energy anodes for LIBs.

2.
Nanomaterials (Basel) ; 13(19)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37836330

RESUMEN

Two-dimensional molybdenum disulfide (MoS2) is considered as a highly promising anode material for lithium-ion batteries (LIBs) due to its unique layer structure, large plane spacing, and high theoretical specific capacity; however, the overlap of MoS2 nanosheets and inherently low electrical conductivity lead to rapid capacity decay, resulting in poor cycling stability and low multiplicative performance. This severely limits its practical application in LIBs. To overcome the above problems, composite fibers with a core//sheath structure have been designed and fabricated. The sheath moiety of MoS2 nanosheets is uniformly anchored by the hydrothermal treatment of the axial of carbon nanofibers derived from an electrospinning method (CNFs//MoS2). The quantity of the MoS2 nanosheets on the CNFs substrates can be tuned by controlling the amount of utilized thiourea precursor. The influence of the MoS2 nanosheets on the electrochemical properties of the composite fibers has been investigated. The synergistic effect between MoS2 and carbon nanofibers can enhance their electrical conductivity and ionic reversibility as an anode for LIBs. The composite fibers deliver a high reversible capacity of 866.5 mA h g-1 after 200 cycles at a current density of 0.5 A g-1 and maintain a capacity of 703.3 mA h g-1 after a long cycle of 500 charge-discharge processes at 1 A g-1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA