Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Theor Biol ; 557: 111332, 2023 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-36323393

RESUMEN

In March 2020 mathematics became a key part of the scientific advice to the UK government on the pandemic response to COVID-19. Mathematical and statistical modelling provided critical information on the spread of the virus and the potential impact of different interventions. The unprecedented scale of the challenge led the epidemiological modelling community in the UK to be pushed to its limits. At the same time, mathematical modellers across the country were keen to use their knowledge and skills to support the COVID-19 modelling effort. However, this sudden great interest in epidemiological modelling needed to be coordinated to provide much-needed support, and to limit the burden on epidemiological modellers already very stretched for time. In this paper we describe three initiatives set up in the UK in spring 2020 to coordinate the mathematical sciences research community in supporting mathematical modelling of COVID-19. Each initiative had different primary aims and worked to maximise synergies between the various projects. We reflect on the lessons learnt, highlighting the key roles of pre-existing research collaborations and focal centres of coordination in contributing to the success of these initiatives. We conclude with recommendations about important ways in which the scientific research community could be better prepared for future pandemics. This manuscript was submitted as part of a theme issue on "Modelling COVID-19 and Preparedness for Future Pandemics".


Asunto(s)
COVID-19 , Pandemias , Humanos , Pandemias/prevención & control , COVID-19/epidemiología , Aprendizaje , Matemática , Reino Unido/epidemiología
2.
Bull Math Biol ; 81(6): 1731-1759, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30809774

RESUMEN

The number of pathogenic threats to plant, animal and human health is increasing. Controlling the spread of such threats is costly and often resources are limited. A key challenge facing decision makers is how to allocate resources to control the different threats in order to achieve the least amount of damage from the collective impact. In this paper we consider the allocation of limited resources across n independent target populations to treat pathogens whose spread is modelled using the susceptible-infected-susceptible model. Using mathematical analysis of the systems dynamics, we show that for effective disease control, with a limited budget, treatment should be focused on a subset of populations, rather than attempting to treat all populations less intensively. The choice of populations to treat can be approximated by a knapsack-type problem. We show that the knapsack closely approximates the exact optimum and greatly outperforms a number of simpler strategies. A key advantage of the knapsack approximation is that it provides insight into the way in which the economic and epidemiological dynamics affect the optimal allocation of resources. In particular using the knapsack approximation to apportion control takes into account two important aspects of the dynamics: the indirect interaction between the populations due to the shared pool of limited resources and the dependence on the initial conditions.


Asunto(s)
Epidemias/prevención & control , Modelos Biológicos , Asignación de Recursos/estadística & datos numéricos , Algoritmos , Animales , Epidemias/estadística & datos numéricos , Bosques , Interacciones Huésped-Patógeno , Humanos , Conceptos Matemáticos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/prevención & control , Asignación de Recursos/economía
3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(5 Pt 1): 051907, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-23004788

RESUMEN

Ion channels are membrane proteins that open and close at random and play a vital role in the electrical dynamics of excitable cells. The stochastic nature of the conformational changes these proteins undergo can be significant, however current stochastic modeling methodologies limit the ability to study such systems. Discrete-state Markov chain models are seen as the "gold standard," but are computationally intensive, restricting investigation of stochastic effects to the single-cell level. Continuous stochastic methods that use stochastic differential equations (SDEs) to model the system are more efficient but can lead to simulations that have no biological meaning. In this paper we show that modeling the behavior of ion channel dynamics by a reflected SDE ensures biologically realistic simulations, and we argue that this model follows from the continuous approximation of the discrete-state Markov chain model. Open channel and action potential statistics from simulations of ion channel dynamics using the reflected SDE are compared with those of a discrete-state Markov chain method. Results show that the reflected SDE simulations are in good agreement with the discrete-state approach. The reflected SDE model therefore provides a computationally efficient method to simulate ion channel dynamics while preserving the distributional properties of the discrete-state Markov chain model and also ensuring biologically realistic solutions. This framework could easily be extended to other biochemical reaction networks.


Asunto(s)
Canales Iónicos/metabolismo , Modelos Biológicos , Potenciales de Acción , Difusión , Activación del Canal Iónico , Cadenas de Markov , Procesos Estocásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA