Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Cancer Res Commun ; 4(8): 1919-1932, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38984891

RESUMEN

Chromobox 2 (CBX2), an epigenetic reader and component of polycomb repressor complex 1, is highly expressed in >75% of high-grade serous carcinoma. Increased CBX2 expression is associated with poorer survival, whereas CBX2 knockdown leads to improved chemotherapy sensitivity. In a high-grade serous carcinoma immune-competent murine model, knockdown of CBX2 decreased tumor progression. We sought to explore the impact of modulation of CBX2 on the tumor immune microenvironment (TIME), understanding that the TIME plays a critical role in disease progression and development of therapy resistance. Exploration of existing datasets demonstrated that elevated CBX2 expression significantly correlated with specific immune cell types in the TIME. RNA sequencing and pathway analysis of differentially expressed genes demonstrated immune signature enrichment. Confocal microscopy and co-culture experiments found that modulation of CBX2 leads to increased recruitment and infiltration of macrophages. Flow cytometry of macrophages cultured with CBX2-overexpressing cells showed increased M2-like macrophages and decreased phagocytosis activity. Cbx2 knockdown in the Trp53-null, Brca2-null ID8 syngeneic murine model (ID8 Trp53-/-Brca2-/-) led to decreased tumor progression compared with the control. NanoString immuno-oncology panel analysis suggested that knockdown in Cbx2 shifts immune cell composition, with an increase in macrophages. Multispectral immunohistochemistry (mIHC) further confirmed an increase in macrophage infiltration. Increased CBX2 expression leads to recruitment and polarization of protumor macrophages, and targeting CBX2 may serve to modulate the TIME to enhance the efficacy of immune therapies. SIGNIFICANCE: CBX2 expression correlates with the TIME. CBX2 modulation shifts the macrophage population, potentially leading to an immunosuppressive microenvironment, highlighting CBX2 as a target to improve efficacy of immunotherapy.


Asunto(s)
Microambiente Tumoral , Animales , Ratones , Humanos , Femenino , Cistadenocarcinoma Seroso/patología , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/inmunología , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/genética , Neoplasias Ováricas/inmunología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Macrófagos/metabolismo , Macrófagos/inmunología , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética
3.
PLoS One ; 19(4): e0298808, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38598488

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) presents at advanced stages and is refractory to most treatment modalities. Wnt signaling activation plays a critical role in proliferation and chemotherapeutic resistance. Minimal media conditions, growth factor dependency, and Wnt dependency were determined via Wnt inhibition for seven patient derived organoids (PDOs) derived from pancreatic tumor organoid libraries (PTOL). Organoids demonstrating response in vitro were assessed in vivo using patient-derived xenografts. Wnt (in)dependent gene signatures were identified for each organoid. Panc269 demonstrated a trend of reduced organoid growth when treated with ETC-159 in combination with paclitaxel or gemcitabine as compared with chemotherapy or ETC-159 alone. Panc320 demonstrated a more pronounced anti-proliferative effect in the combination of ETC-159 and paclitaxel but not with gemcitabine. Panc269 and Panc320 were implanted into nude mice and treated with ETC-159, paclitaxel, and gemcitabine as single agents and in combination. The combination of ETC-159 and paclitaxel demonstrated an anti-tumor effect greater than ETC-159 alone. Extent of combinatory treatment effect were observed to a lesser extent in the Panc320 xenograft. Wnt (in)dependent gene signatures of Panc269 and 320 were consistent with the phenotypes displayed. Gene expression of several key Wnt genes assessed via RT-PCR demonstrated notable fold change following treatment in vivo. Each pancreatic organoid demonstrated varied niche factor dependencies, providing an avenue for targeted therapy, supported through growth analysis following combinatory treatment of Wnt inhibitor and standard chemotherapy in vitro. The clinical utilization of this combinatory treatment modality in pancreatic cancer PDOs has thus far been supported in our patient-derived xenograft models treated with Wnt inhibitor plus paclitaxel or gemcitabine. Gene expression analysis suggests there are key Wnt genes that contribute to the Wnt (in)dependent phenotypes of pancreatic tumors, providing plausible mechanistic explanation for Wnt (in)dependency and susceptibility or resistance to treatment on the genotypic level.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Ratones , Humanos , Gemcitabina , Vía de Señalización Wnt , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Ratones Desnudos , Proliferación Celular , Línea Celular Tumoral , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Organoides/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Mol Cancer Ther ; 23(1): 92-105, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37748191

RESUMEN

Despite the initial benefit from tyrosine kinase inhibitors (TKI) targeting oncogenic ALK and ROS1 gene fusions in non-small cell lung cancer, complete responses are rare and resistance ultimately emerges from residual tumor cells. Although several acquired resistance mechanisms have been reported at the time of disease progression, adaptative resistance mechanisms that contribute to residual diseases before the outgrowth of tumor cells with acquired resistance are less clear. For the patients who have progressed after TKI treatments, but do not demonstrate ALK/ROS1 kinase mutations, there is a lack of biomarkers to guide effective treatments. Herein, we found that phosphorylation of MIG6, encoded by the ERRFI1 gene, was downregulated by ALK/ROS1 inhibitors as were mRNA levels, thus potentiating EGFR activity to support cell survival as an adaptive resistance mechanism. MIG6 downregulation was sustained following chronic exposure to ALK/ROS1 inhibitors to support the establishment of acquired resistance. A higher ratio of EGFR to MIG6 expression was found in ALK TKI-treated and ALK TKI-resistant tumors and correlated with the poor responsiveness to ALK/ROS1 inhibition in patient-derived cell lines. Furthermore, we identified and validated a MIG6 EGFR-binding domain truncation mutation in mediating resistance to ROS1 inhibitors but sensitivity to EGFR inhibitors. A MIG6 deletion was also found in a patient after progressing to ROS1 inhibition. Collectively, this study identifies MIG6 as a novel regulator for EGFR-mediated adaptive and acquired resistance to ALK/ROS1 inhibitors and suggests EGFR to MIG6 ratios and MIG6-damaging alterations as biomarkers to predict responsiveness to ALK/ROS1 and EGFR inhibitors.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Quinasa de Linfoma Anaplásico/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Proteínas Tirosina Quinasas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Receptores ErbB , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/farmacología , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Biomarcadores , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral
6.
bioRxiv ; 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37066339

RESUMEN

SM08502 (cirtuvivint) is a novel pan CDC-like kinase (CLK) and Dual specificity tyrosine kinase (DYRK) inhibitor that targets mRNA splicing and is optimized for Wnt pathway inhibition. Previous evaluation of single agent CLK/DYRK inhibition (SM04690) demonstrated inhibition of tumor progression and ß-catenin/TCF transcriptional activity in CTNNB1-mutant endometrial cancer (EC). In-vitro analysis of SM08502 similarly decreases Wnt transcriptional activity and cellular proliferation while increasing cellular apoptosis. SM08502 is an active single-agent therapy with IC50's in the nanomolar range for all EC cell lines evaluated. Combination of SM08502 with paclitaxel has synergistic effect in vitro, as demonstrated by Combination Index <1, and inhibits tumor progression in four endometrial cancer models (HEC265, Ishikawa, Ishikawa-S33Y, and SNGM). In our in vivo mouse models, Ishikawa demonstrated significantly lower tumor volumes of combination vs SM08502 alone (Repeated Measures one-way ANOVA, p = 0.04), but not vs paclitaxel alone. HEC265, SNGM, and Ishikawa-S33Y tumors all had significantly lower tumor volumes with combination SM08502 and paclitaxel compared to single-agent paclitaxel (Repeated Measures one-way ANOVA, p = 0.01, 0.004, and 0.0008, respectively) or single-agent SM08502 (Repeated Measures one-way ANOVA, p = 0.002, 0.005, and 0.01, respectively) alone. Mechanistically, treatment with SM08502 increases alternative splicing (AS) events compared to treatment with paclitaxel. AS regulation is an important post-transcriptional mechanism associated with the oncogenic process in many cancers, including EC. Results from these studies have led to a Phase I evaluation of this combination in recurrent EC.

7.
Allergy ; 78(1): 244-257, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35993851

RESUMEN

BACKGROUND: The prevalence of atopic diseases has increased with atopic dermatitis (AD) as the earliest manifestation. We assessed if molecular risk factors in atopic mothers influence their infants' susceptibility to an atopic disease. METHODS: Pregnant women and their infants with (n = 174, high-risk) or without (n = 126, low-risk) parental atopy were enrolled in a prospective birth cohort. Global differentially methylated regions (DMRs) were determined in atopic (n = 92) and non-atopic (n = 82) mothers. Principal component analysis was used to predict atopy risk in children dependent on maternal atopy. Genome-wide transcriptomic analyses were performed in paired atopic (n = 20) and non-atopic (n = 15) mothers and cord blood. Integrative genomic analyses were conducted to define methylation-gene expression relationships. RESULTS: Atopic dermatitis was more prevalent in high-risk compared to low-risk children by age 2. Differential methylation analyses identified 165 DMRs distinguishing atopic from non-atopic mothers. Inclusion of DMRs in addition to maternal atopy significantly increased the odds ratio to develop AD in children from 2.56 to 4.26. In atopic compared to non-atopic mothers, 139 differentially expressed genes (DEGs) were identified significantly enriched of genes within the interferon signaling pathway. Expression quantitative trait methylation analyses dependent on maternal atopy identified 29 DEGs controlled by 136 trans-acting methylation marks, some located near transcription factors. Differential expression for the same nine genes, including MX1 and IFI6 within the interferon pathway, was identified in atopic and non-atopic mothers and high-risk and low-risk children. CONCLUSION: These data suggest that in utero epigenetic and transcriptomic mechanisms predominantly involving the interferon pathway may impact and predict the development of infant atopy.


Asunto(s)
Dermatitis Atópica , Niño , Lactante , Humanos , Femenino , Embarazo , Preescolar , Dermatitis Atópica/epidemiología , Dermatitis Atópica/genética , Estudios Prospectivos , Factores de Riesgo , Familia , Transcriptoma
8.
Mol Microbiol ; 117(5): 1023-1047, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35191101

RESUMEN

Agrobacterium tumefaciens is a member of the Alphaproteobacteria that pathogenises plants and associates with biotic and abiotic surfaces via a single cellular pole. A. tumefaciens produces the unipolar polysaccharide (UPP) at the site of surface contact. UPP production is normally surface-contact inducible, but elevated levels of the second messenger cyclic diguanylate monophosphate (cdGMP) bypass this requirement. Multiple lines of evidence suggest that the UPP has a central polysaccharide component. Using an A. tumefaciens derivative with elevated cdGMP and mutationally disabled for other dispensable polysaccharides, a series of related genetic screens have identified a large number of genes involved in UPP biosynthesis, most of which are Wzx-Wzy-type polysaccharide biosynthetic components. Extensive analyses of UPP production in these mutants have revealed that the UPP is composed of two genetically, chemically, and spatially discrete forms of polysaccharide, and that each requires a specific Wzy-type polymerase. Other important biosynthetic, processing, and regulatory functions for UPP production are also revealed, some of which are common to both polysaccharides, and a subset of which are specific to each type. Many of the UPP genes identified are conserved among diverse rhizobia, whereas others are more lineage specific.


Asunto(s)
Agrobacterium tumefaciens , Vías Biosintéticas , Adhesivos/metabolismo , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vías Biosintéticas/genética , Regulación Bacteriana de la Expresión Génica/genética , Polisacáridos Bacterianos/metabolismo
9.
Blood ; 139(11): 1707-1721, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-34699591

RESUMEN

Loss of NADPH oxidase activity leads to altered phagocyte responses and exaggerated inflammation in chronic granulomatous disease (CGD). We sought to assess the effects of Nox2 absence on monocyte-derived macrophages (MoMacs) in gp91phox-/y mice during zymosan-induced peritonitis. MoMacs from CGD and wild-type (WT) peritonea were characterized over time after zymosan injection. Although numbers lavaged from both genotypes were virtually identical, there were marked differences in maturation: newly recruited WT MoMacs rapidly enlarged and matured, losing Ly6C and gaining MHCII, CD206, and CD36, whereas CGD MoMacs remained small and were mostly Ly6C+MHCII-. RNA-sequencing analyses showed few intrinsic differences between genotypes in newly recruited MoMacs but significant differences with time. WT MoMacs displayed changes in metabolism, adhesion, and reparative functions, whereas CGD MoMacs remained inflammatory. PKH dye labeling revealed that although WT MoMacs were mostly recruited within the first 24 hours and remained in the peritoneum while maturing and enlarging, CGD monocytes streamed into the peritoneum for days, with many migrating to the diaphragm where they were found in fibrin(ogen) clots surrounding clusters of neutrophils in nascent pyogranulomata. Importantly, these observations seemed to be driven by milieu: adoptive transfer of CGD MoMacs into inflamed peritonea of WT mice resulted in immunophenotypic maturation and normal behavior, whereas altered maturation/behavior of WT MoMacs resulted from transfer into inflamed peritonea of CGD mice. In addition, Nox2-deficient MoMacs behaved similarly to their Nox2-sufficient counterparts within the largely WT milieu of mixed bone marrow chimeras. These data show persistent recruitment with fundamental failure of MoMac maturation in CGD.


Asunto(s)
Enfermedad Granulomatosa Crónica , Animales , Enfermedad Granulomatosa Crónica/genética , Inflamación/metabolismo , Macrófagos/metabolismo , Ratones , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Neutrófilos/metabolismo
10.
Thorax ; 77(1): 86-90, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34183448

RESUMEN

The prognostic value of peripheral blood mononuclear cell (PBMC) expression profiles, when used in patients with chronic hypersensitivity pneumonitis (CHP), as an adjunct to traditional clinical assessment is unknown. RNA-seq analysis on PBMC from 37 patients with CHP at initial presentation determined that (1) 74 differentially expressed transcripts at a 10% false discovery rate distinguished those with (n=10) and without (n=27) disease progression, defined as absolute FVC and/or diffusing capacity of the lungs for carbon monoxide (DLCO) decline of ≥10% and increased fibrosis on chest CT images within 24 months, and (2) classification models based on gene expression and clinical factors strongly outperform models based solely on clinical factors (baseline FVC%, DLCO% and chest CT fibrosis).


Asunto(s)
Alveolitis Alérgica Extrínseca , Leucocitos Mononucleares , Alveolitis Alérgica Extrínseca/diagnóstico por imagen , Alveolitis Alérgica Extrínseca/genética , Humanos , Pulmón , Pronóstico , Transcriptoma
11.
Adv Healthc Mater ; 11(9): e2102209, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34967497

RESUMEN

Poly(ethylene glycol) (PEG) hydrogels hold promise for in vivo applications but induce a foreign body response (FBR). While macrophages are key in the FBR, many questions remain. This study investigates temporal changes in the transcriptome of implant-associated monocytes and macrophages. Proinflammatory pathways are upregulated in monocytes compared to control monocytes but subside by day 28. Macrophages are initially proinflammatory but shift to a profibrotic state by day 14, coinciding with fibrous capsule emergence. Next, this study assesses the origin of macrophages responsible for fibrous encapsulation using wildtype, C-C Motif Chemokine Receptor 2 (CCR2)-/- mice that lack recruited macrophages, and Macrophage Fas-Induced Apoptosis (MaFIA) mice that enable macrophage ablation. Subpopulations of recruited and tissue-resident macrophages are identified. Fibrous encapsulation proceeds in CCR2-/- mice similar to wildtype mice. However, studies in MaFIA mice indicate that macrophages are necessary for fibrous capsule formation. These findings suggest that macrophage origin impacts the FBR progression and provides evidence that tissue-resident macrophages and not the recruited macrophages may drive fibrosis in the FBR to PEG hydrogels. This study demonstrates that implant-associated monocytes and macrophages have temporally distinct transcriptomes in the FBR and that profibrotic pathways associated with macrophages may be enriched in tissue-resident macrophages.


Asunto(s)
Cuerpos Extraños , Activación de Macrófagos , Animales , Materiales Biocompatibles/metabolismo , Fibrosis , Cuerpos Extraños/metabolismo , Hidrogeles/metabolismo , Hidrogeles/farmacología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Polietilenglicoles/metabolismo , Polietilenglicoles/farmacología
12.
PLoS Pathog ; 17(6): e1009602, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34106992

RESUMEN

The CD4+ T cell response is critical to host protection against helminth infection. How this response varies across different hosts and tissues remains an important gap in our understanding. Using IL-4-reporter mice to identify responding CD4+ T cells to Nippostrongylus brasiliensis infection, T cell receptor sequencing paired with novel clustering algorithms revealed a broadly reactive and clonally diverse CD4+ T cell response. While the most prevalent clones and clonotypes exhibited some tissue selectivity, most were observed to reside in both the lung and lung-draining lymph nodes. Antigen-reactivity of the broader repertoires was predicted to be shared across both tissues and individual mice. Transcriptome, trajectory, and chromatin accessibility analysis of lung and lymph-node repertoires revealed three unique but related populations of responding IL-4+ CD4+ T cells consistent with T follicular helper, T helper 2, and a transitional population sharing similarity with both populations. The shared antigen reactivity of lymph node and lung repertoires combined with the adoption of tissue-specific gene programs allows for the pairing of cellular and humoral responses critical to the orchestration of anti-helminth immunity.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Infecciones por Strongylida/inmunología , Animales , Pulmón/inmunología , Ganglios Linfáticos/inmunología , Ratones , Nippostrongylus , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Análisis de la Célula Individual
13.
Nat Commun ; 12(1): 494, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33479210

RESUMEN

Mast cells are critical effectors of allergic inflammation and protection against parasitic infections. We previously demonstrated that transcription factors GATA2 and MITF are the mast cell lineage-determining factors. However, it is unclear whether these lineage-determining factors regulate chromatin accessibility at mast cell enhancer regions. In this study, we demonstrate that GATA2 promotes chromatin accessibility at the super-enhancers of mast cell identity genes and primes both typical and super-enhancers at genes that respond to antigenic stimulation. We find that the number and densities of GATA2- but not MITF-bound sites at the super-enhancers are several folds higher than that at the typical enhancers. Our studies reveal that GATA2 promotes robust gene transcription to maintain mast cell identity and respond to antigenic stimulation by binding to super-enhancer regions with dense GATA2 binding sites available at key mast cell genes.


Asunto(s)
Antígenos/metabolismo , Ensamble y Desensamble de Cromatina/genética , Elementos de Facilitación Genéticos/genética , Factor de Transcripción GATA2/genética , Mastocitos/metabolismo , Animales , Antígenos/inmunología , Linaje de la Célula/genética , Células Cultivadas , Cromatina/genética , Cromatina/metabolismo , Femenino , Factor de Transcripción GATA2/metabolismo , Perfilación de la Expresión Génica/métodos , Masculino , Mastocitos/inmunología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo
14.
Cell Rep ; 33(5): 108337, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33147458

RESUMEN

The mononuclear phagocyte (MP) system consists of macrophages, monocytes, and dendritic cells (DCs). MP subtypes play distinct functional roles in steady-state and inflammatory conditions. Although murine MPs are well characterized, their pulmonary and lymph node (LN) human homologs remain poorly understood. To address this gap, we have created a gene expression compendium across 24 distinct human and murine lung and LN MPs, along with human blood and murine spleen MPs, to serve as validation datasets. In-depth RNA sequencing identifies corresponding human-mouse MP subtypes and determines marker genes shared and divergent across species. Unexpectedly, only 13%-23% of the top 1,000 marker genes (i.e., genes not shared across species-specific MP subtypes) overlap in corresponding human-mouse MP counterparts. Lastly, CD88 in both species helps distinguish monocytes/macrophages from DCs. Our cross-species expression compendium serves as a resource for future translational studies to investigate beforehand whether pursuing specific MP subtypes or genes will prove fruitful.


Asunto(s)
Perfilación de la Expresión Génica , Pulmón/citología , Ganglios Linfáticos/citología , Fagocitos/metabolismo , Adulto , Animales , Antígenos CD1/metabolismo , Biomarcadores/metabolismo , Linaje de la Célula , Membrana Celular/metabolismo , Células Dendríticas/metabolismo , Femenino , Regulación de la Expresión Génica , Humanos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/metabolismo , ARN/aislamiento & purificación , Especificidad de la Especie
15.
Proc Natl Acad Sci U S A ; 117(33): 19888-19895, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32747552

RESUMEN

More than 30% of genes in higher eukaryotes are regulated by RNA polymerase II (Pol II) promoter proximal pausing. Pausing is released by the positive transcription elongation factor complex (P-TEFb). However, the exact mechanism by which this occurs and whether phosphorylation of the carboxyl-terminal domain of Pol II is involved in the process remains unknown. We previously reported that JMJD5 could generate tailless nucleosomes at position +1 from transcription start sites (TSS), thus perhaps enable progression of Pol II. Here we find that knockout of JMJD5 leads to accumulation of nucleosomes at position +1. Absence of JMJD5 also results in loss of or lowered transcription of a large number of genes. Interestingly, we found that phosphorylation, by CDK9, of Ser2 within two neighboring heptad repeats in the carboxyl-terminal domain of Pol II, together with phosphorylation of Ser5 within the second repeat, HR-Ser2p (1, 2)-Ser5p (2) for short, allows Pol II to bind JMJD5 via engagement of the N-terminal domain of JMJD5. We suggest that these events bring JMJD5 near the nucleosome at position +1, thus allowing JMJD5 to clip histones on this nucleosome, a phenomenon that may contribute to release of Pol II pausing.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina/metabolismo , Histona Demetilasas/metabolismo , ARN Polimerasa II/metabolismo , Transcripción Genética , Línea Celular Tumoral , Quinasa 9 Dependiente de la Ciclina/genética , Histona Demetilasas/química , Histona Demetilasas/genética , Humanos , Nucleosomas/genética , Nucleosomas/metabolismo , Fosforilación , Factor B de Elongación Transcripcional Positiva/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Dominios Proteicos , ARN Polimerasa II/genética
16.
Sci Immunol ; 5(43)2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31924686

RESUMEN

A transitory, interleukin-25 (IL-25)-responsive, group 2 innate lymphoid cell (ILC2) subset induced during type 2 inflammation was recently identified as iILC2s. This study focuses on understanding the significance of this population in relation to tissue-resident nILC2s in the lung and intestine. RNA-sequencing and pathway analysis revealed the AP-1 superfamily transcription factor BATF (basic leucine zipper transcription factor, activating transcription factor-like) as a potential modulator of ILC2 cell fate. Infection of BATF-deficient mice with Nippostrongylus brasiliensis showed a selective defect in IL-25-mediated helminth clearance and a corresponding loss of iILC2s in the lung characterized as IL-17RBhigh, KLRG1high, BATFhigh, and Arg1low BATF deficiency selectively impaired iILC2s because it had no impact on tissue-resident nILC2 frequency or function. Pulmonary-associated iILC2s migrated to the lung after infection, where they represented an early source of IL-4 and IL-13. Although the composition of ILC2s in the small intestine was distinct from those in the lung, their frequency and IL-13 expression remained dependent on BATF, which was also required for optimal goblet and tuft cell hyperplasia. Findings support IL-25-responsive ILC2s as early sentinels of mucosal barrier integrity.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/inmunología , Citocinas/inmunología , Linfocitos/inmunología , Nippostrongylus , Infecciones por Strongylida/inmunología , Alérgenos/inmunología , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Femenino , Intestino Delgado/inmunología , Pulmón/inmunología , Masculino , Ratones Transgénicos , Pyroglyphidae/inmunología
17.
G3 (Bethesda) ; 10(2): 555-567, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31810980

RESUMEN

Alveolar macrophages serve as central orchestrators of inflammatory responses in the lungs, both initiating their onset and promoting their resolution. However, the mechanisms that program macrophages for these dynamic responses are not fully understood. Over 95% of all mammalian genes undergo alternative pre-mRNA splicing. While alternative splicing has been shown to regulate inflammatory responses in macrophages in vitro, it has not been investigated on a genome-wide scale in vivo Here we used RNAseq to investigate alternative pre-mRNA splicing in alveolar macrophages isolated from lipopolysaccharide (LPS)-treated mice during the peak of inflammation and during its resolution. We found that lung inflammation induced substantial alternative pre-mRNA splicing in alveolar macrophages. The number of changes in isoform usage was greatest at the peak of inflammation and involved multiple classes of alternative pre-mRNA splicing events. Comparative pathway analysis of inflammation-induced changes in alternative pre-mRNA splicing and differential gene expression revealed overlap of pathways enriched for immune responses such as chemokine signaling and cellular metabolism. Moreover, alternative pre-mRNA splicing of genes in metabolic pathways differed in tissue resident vs. recruited (blood monocyte-derived) alveolar macrophages and corresponded to changes in core metabolism, including a switch to Warburg-like metabolism in recruited macrophages with increased glycolysis and decreased flux through the tricarboxylic acid cycle.


Asunto(s)
Inflamación/genética , Macrófagos Alveolares/metabolismo , Precursores del ARN , Empalme del ARN , Animales , Citocinas/metabolismo , Lipopolisacáridos/farmacología , Macrófagos Alveolares/efectos de los fármacos , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Ratones Endogámicos C57BL , RNA-Seq
18.
Proc Natl Acad Sci U S A ; 116(22): 10927-10936, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31085655

RESUMEN

Cell lineage specification is a tightly regulated process that is dependent on appropriate expression of lineage and developmental stage-specific transcriptional programs. Here, we show that Chromodomain Helicase DNA-binding protein 4 (CHD4), a major ATPase/helicase subunit of Nucleosome Remodeling and Deacetylase Complexes (NuRD) in lymphocytes, is essential for specification of the early B cell lineage transcriptional program. In the absence of CHD4 in B cell progenitors in vivo, development of these cells is arrested at an early pro-B-like stage that is unresponsive to IL-7 receptor signaling and unable to efficiently complete V(D)J rearrangements at Igh loci. Our studies confirm that chromatin accessibility and transcription of thousands of gene loci are controlled dynamically by CHD4 during early B cell development. Strikingly, CHD4-deficient pro-B cells express transcripts of many non-B cell lineage genes, including genes that are characteristic of other hematopoietic lineages, neuronal cells, and the CNS, lung, pancreas, and other cell types. We conclude that CHD4 inhibits inappropriate transcription in pro-B cells. Together, our data demonstrate the importance of CHD4 in establishing and maintaining an appropriate transcriptome in early B lymphopoiesis via chromatin accessibility.


Asunto(s)
Linfocitos B/metabolismo , Linaje de la Célula/genética , ADN Helicasas/genética , Linfopoyesis/genética , Transcripción Genética/genética , Animales , Linfocitos B/citología , Ensamble y Desensamble de Cromatina/genética , Regulación de la Expresión Génica/genética , Ratones , Ratones Transgénicos
19.
Hepatology ; 70(1): 67-83, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30516830

RESUMEN

A crucial component of nonalcoholic fatty liver disease (NAFLD) pathogenesis is lipid stress, which may contribute to hepatic inflammation and activation of innate immunity in the liver. However, little is known regarding how dietary lipids, including fat and cholesterol, may facilitate innate immune activation in vivo. We hypothesized that dietary fat and cholesterol drive NAFLD progression to steatohepatitis and hepatic fibrosis by altering the transcription and phenotype of hepatic macrophages. This hypothesis was tested by using RNA-sequencing methods to characterize and analyze sort-purified hepatic macrophage populations that were isolated from mice fed diets with varying amounts of fat and cholesterol. The addition of cholesterol to a high-fat diet triggered hepatic pathology reminiscent of advanced nonalcoholic steatohepatitis (NASH) in humans characterized by signs of cholesterol dysregulation, generation of oxidized low-density lipoprotein, increased recruitment of hepatic macrophages, and significant fibrosis. RNA-sequencing analyses of hepatic macrophages in this model revealed that dietary cholesterol induced a tissue repair and regeneration phenotype in Kupffer cells (KCs) and recruited infiltrating macrophages to a greater degree than fat. Furthermore, comparison of diseased KCs and infiltrating macrophages revealed that these two macrophage subsets are transcriptionally diverse. Finally, direct stimulation of murine and human macrophages with oxidized low-density lipoprotein recapitulated some of the transcriptional changes observed in the RNA-sequencing study. These findings indicate that fat and cholesterol synergize to alter macrophage phenotype, and they also challenge the dogma that KCs are purely proinflammatory in NASH. Conclusion: This comprehensive view of macrophage populations in NASH indicates mechanisms by which cholesterol contributes to NASH progression and identifies potential therapeutic targets for this common disease.


Asunto(s)
Colesterol en la Dieta/efectos adversos , Macrófagos del Hígado/metabolismo , Hígado/inmunología , Enfermedad del Hígado Graso no Alcohólico/etiología , Animales , Progresión de la Enfermedad , Hepatitis/etiología , Macrófagos del Hígado/ultraestructura , Metabolismo de los Lípidos , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Transcriptoma
20.
Sci Immunol ; 3(27)2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-30194241

RESUMEN

In contrast to responses against infectious challenge, T cell responses induced via adjuvanted subunit vaccination are dependent on interleukin-27 (IL-27). We show that subunit vaccine-elicited cellular responses are also dependent on IL-15, again in contrast to the infectious response. Early expression of interferon regulatory factor 4 (IRF4) was compromised in either IL-27- or IL-15-deficient environments after vaccination but not infection. Because IRF4 facilitates metabolic support of proliferating cells via aerobic glycolysis, we expected this form of metabolic activity to be reduced in the absence of IL-27 or IL-15 signaling after vaccination. Instead, metabolic flux analysis indicated that vaccine-elicited T cells used only mitochondrial function to support their clonal expansion. Loss of IL-27 or IL-15 signaling during vaccination resulted in a reduction in mitochondrial function, with no corresponding increase in aerobic glycolysis. Consistent with these observations, the T cell response to vaccination was unaffected by in vivo treatment with the glycolytic inhibitor 2-deoxyglucose, whereas the response to viral challenge was markedly lowered. Collectively, our data identify IL-27 and IL-15 as critical to vaccine-elicited T cell responses because of their capacity to fuel clonal expansion through a mitochondrial metabolic program previously thought only capable of supporting quiescent naïve and memory T cells.


Asunto(s)
Linfocitos T/inmunología , Vacunas de Subunidad/administración & dosificación , Adyuvantes Inmunológicos/administración & dosificación , Aerobiosis , Alérgenos/inmunología , Animales , Femenino , Glucólisis , Interleucina-15/inmunología , Interleucinas/inmunología , Ratones Endogámicos C57BL , Ratones Transgénicos , Infecciones por Orthomyxoviridae/inmunología , Ovalbúmina/inmunología , Vaccinia/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA