Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Molecules ; 29(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38543008

RESUMEN

In this work, a novel adsorbent called magnetite/MXene (Fe3O4/Ti3C2) nanocomposite was prepared, characterized, and applied for the removal of organic dye, malachite green dye (MG), from both real water and model solutions. Numerous techniques were used to characterize the prepared Fe3O4/Ti3C2 nanocomposite: XRD, SEM, TEM, FTIR, and surface area analysis. The outcomes showed that the Al layer had been selectively etched, that the MAX phase (Ti3AlC2) had been transformed into layered Ti3C2 MXene, that the cubic Fe3O4 phase had been prepared, and that the prepared Fe3O4 NPs had been evenly distributed on the MXene surface. Also, SEM pictures showed the successful etching of the MAX phase and the formation of the ultrathin multi-layered MXene, which the Fe3O4 NPs covered upon forming the Fe3O4/Ti3C2 nanocomposite at the surface and inside the ultrathin multi-layered MXene. The effect of different operational parameters affecting the removal process was explored and optimized. The MG dye was removed mostly within 60 min, with a 4.68 mg/g removal capacity using 5 mg of the Fe3O4/Ti3C2 nanocomposite. The removal was examined from both kinetic and thermodynamic perspectives, and the findings demonstrated the spontaneity of the removal process as well as the applicability of fractal-like pseudo-first-order and fractal-like pseudo-second-order kinetics when compared to other kinetics models. The Fe3O4/Ti3C2 nanocomposite was used to remove MG dye from real spiked environmental water samples, and the results revealed the successful remediation of the real samples from the organic dye by the Fe3O4/Ti3C2 nanocomposite. Accordingly, Fe3O4/Ti3C2 nanocomposite could be considered a potential adsorbent for the environmental remediation of polluted water.

2.
Int J Anal Chem ; 2023: 5001869, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37954135

RESUMEN

Spectral interference through the presence of uninformative variables, excess reagents, and complications in the refinement of the analyte signal is common in the quest to identify complex species in real samples. Therefore, an economical green, facile, and sensitive strategy has been developed for Cu2+ detection using the anionic surfactant sodium dodecylsulphate- (SDS-) assisted dual-wavelength ß-correction spectrophotometric strategy combined with the chromogenic reagent zincon (ZI). The low limits of detection (LOD) and quantification (LOQ) of Cu2+ using ordinary (single wavelength) spectrophotometry were 0.19 (3.02) and 0.63 (10.0) µgmL-1, and these values were improved to 0.08 (1.27) and 0.26 µgmL-1 (4.12 µM)) using ß-correction (dual wavelength) spectrophotometry, respectively. The LOD and LOQ were improved from 0.08 (1.27) and 0.26 (4.12) µgmL-1 to 0.02 (0.32) and 0.08 µgmL-1 (1.27 µM) using SDS-assisted dual-ß-correction spectrometry, respectively. Ringbom, s, and the corrected absorbance (Ac) versus Cu2+ concentration plots were linear over the concentration range 1.10-2.4 (17.4-38.1) and 0.50-2.40 µgmL-1 (7.94-38.1 µM), respectively. Sandell's sensitivity index of 3.0 × 10-3 µg/cm2 was achieved. The selectivity was further confirmed via monitoring the impact of common diverse ions and surfactants on the corrected absorbance. Total determination and Cu2+ speciation in water were favorably implemented and validated by ICP-OES at 95% (P=0.05). Satisfactory Cu2+ recoveries in tap (92.2-98.0%) and mineral (105-111.0%) water samples were achieved. The sensing system is simple, reliable, sensitive, and selective for Cu2+ detection.

3.
Polymers (Basel) ; 15(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36987282

RESUMEN

In this work, we have developed novel beads based on carboxymethyl cellulose (CMC) encapsulated copper oxide-titanium oxide (CuO-TiO2) nanocomposite (CMC/CuO-TiO2) via Al+3 cross-linking agent. The developed CMC/CuO-TiO2 beads were applied as a promising catalyst for the catalytic reduction of organic and inorganic contaminants; nitrophenols (NP), methyl orange (MO), eosin yellow (EY) and potassium hexacyanoferrate (K3[Fe(CN)6]) in the presence of reducing agent (NaBH4). CMC/CuO-TiO2 nanocatalyst beads exhibited excellent catalytic activity in the reduction of all selected pollutants (4-NP, 2-NP, 2,6-DNP, MO, EY and K3[Fe(CN)6]). Further, the catalytic activity of beads was optimized toward 4-nitrophenol with varying its concentrations and testing different concentrations of NaBH4. Beads stability, reusability, and loss in catalytic activity were investigated using the recyclability method, in which the CMC/CuO-TiO2 nanocomposite beads were tested several times for the reduction of 4-NP. As a result, the designed CMC/CuO-TiO2 nanocomposite beads are strong, stable, and their catalytic activity has been proven.

4.
J Fungi (Basel) ; 8(6)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35736122

RESUMEN

In terms of reduced toxicity, the biologically inspired green synthesis of nanoparticles has emerged as a promising alternative to chemically fabricated nanoparticles. The use of a highly stable, biocompatible, and environmentally friendly aqueous extract of Cynara cardunculus as a reducing and capping agent in this study demonstrated the possibility of green manufacturing of silver nanoparticles (CC-AgNPs). UV-visible spectroscopy validated the development of CC-AgNPs, indicating the surface plasmon resonance (SPR) λmax band at 438 nm. The band gap of CC-AgNPs was found to be 2.26 eV. SEM and TEM analysis examined the surface morphology of CC-AgNPs, and micrographs revealed that the nanoparticles were spherical. The crystallinity, crystallite size, and phase purity of as-prepared nanoparticles were confirmed using XRD analysis, and it was confirmed that the CC-AgNPs were a face-centered cubic (fcc) crystalline-structured material. Furthermore, the role of active functional groups involved in the reduction and surface capping of CC-AgNPs was revealed using the Fourier transform infrared (FTIR) spectroscopic technique. CC-AgNPs were mostly spherical and monodispersed, with an average size of 26.89 nm, and were shown to be stable for a longer period without any noticeable change at room temperature. Further, we checked the antifungal mechanism of CC-AgNPs against C. auris MRL6057. The minimum inhibitory concentrations (MIC) and minimum fungicidal concentrations (MFC) were 50.0 µg/mL and 100.0 µg/mL respectively. The cell count and viability assay confirmed the fungicidal potential of CC-AgNPs. Further, the analysis showed that CC-AgNPs could induce apoptosis and G2/M phase cell cycle arrest in C. auris MRL6057. Our results also suggest that the CC-AgNPs were responsible for the induction of mitochondrial toxicity. TUNEL assay results revealed that higher concentrations of CC-AgNPs could cause DNA fragmentation. Therefore, the present study suggested that CC-AgNPs hold the capacity for antifungal drug development against C. auris infections.

5.
Materials (Basel) ; 15(6)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35329439

RESUMEN

The removal of dyes from industrial effluents is one of the most important industrial processes that is currently on academic demand. In this project, for the first time, Trachycarpus fortunei seeds are used as biosources for the synthesis of activated carbon (AC) using physical as well as acid-base chemical methods. The synthesized AC was initially characterized by different instrumental techniques, such as FTIR, BET isotherm, SEM, EDX and XRD. Then, the prepared activated carbon was used as an economical adsorbent for the removal of xylenol orange and thymol blue from an aqueous solution. Furthermore, the effect of different parameters, i.e., concentration of dye, contact time, pH, adsorbent amount, temperature, adsorbent size and agitation speed, were investigated in batch experiments at room temperature. The analysis of different techniques concluded that the pyrolysis method created a significant change in the chemical composition of the prepared AC and the acid-treated AC offered a high carbon/oxygen composite, which is graphitic in nature. The removal of both dyes (xylenol orange and thymol blue) was increased with the increase in the dye's initial concentration. Isothermal data suggested that the adsorption of both dyes follows the Langmuir model compared to the Freundlich model. The equilibrium time for AC biomass to achieve the removal of xylenol orange and thymol blue dyes was determined to be 60 min, and the kinetic data suggested that the adsorption of both dyes obeyed the pseudo-second order model. The optimal pH for thymol blue adsorption was pH 6, while it was pH 2 for xylenol orange. The adsorption of both dyes increased with the increase in the temperature. The influence of the adsorbent amount indicated that the adsorption capacity (mg/g) of both dyes reduced with the rise in the adsorbent amount. Thus, the current study suggests that AC prepared by an acid treatment from Trachycarpus fortunei seeds is a good, alternative, cost effective, and eco-friendly adsorbent for the effective removal of dyes from polluted water.

6.
Gels ; 8(2)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35200472

RESUMEN

In this work, an efficient nanocatalyst was developed based on nanoadsorbent beads. Herein, carboxymethyl cellulose-copper oxide-cobalt oxide nanocomposite beads (CMC/CuO-Co2O3) crosslinked by using AlCl3 were successfully prepared. The beads were then coated with chitosan (Cs), Cs@CMC/CuO-Co2O3. The prepared beads, CMC/CuO-Co2O3 and Cs@CMC/CuO-Co2O3, were utilized as adsorbents for heavy metal ions (Ni, Fe, Ag and Zn). By using CMC/CuO-Co2O3 and Cs@CMC/CuO-Co2O3, the distribution coefficients (Kd) for Ni, Fe, Ag and Zn were (41.166 and 6173.6 mLg-1), (136.3 and 1500 mLg-1), (20,739.1 and 1941.1 mLg-1) and (86.9 and 2333.3 mLg-1), respectively. Thus, Ni was highly adsorbed by Cs@CMC/CuO-Co2O3 beads. The metal ion adsorbed on the beads were converted into nanoparticles by treating with reducing agent (NaBH4) and named Ni/Cs@CMC/CuO-Co2O3. Further, the prepared nanoparticles-decorated beads (Ni/Cs@CMC/CuO-Co2O3) were utilized as nanocatalysts for the reduction of organic and inorganic pollutants (4-nitophenol, MO, EY dyes and potassium ferricyanide K3[Fe(CN)6]) in the presence of NaBH4. Among all catalysts, Ni/Cs@CMC/CuO-Co2O3 had the highest catalytic activity toward MO, EY and K3[Fe(CN)6], removing up to 98% in 2.0 min, 90 % in 6.0 min and 91% in 6.0 min, respectively. The reduction rate constants of MO, EY, 4-NP and K3[Fe(CN)6] were 1.06 × 10-1, 4.58 × 10-3, 4.26 × 10-3 and 5.1 × 10-3 s-1, respectively. Additionally, the catalytic activity of the Ni/Cs@CMC/CuO-Co2O3 beads was effectively optimized. The stability and recyclability of the beads were tested up to five times for the catalytic reduction of MO, EY and K3[Fe(CN)6]. It was confirmed that the designed nanocomposite beads are ecofriendly and efficient with high strength and stability as catalysts for the reduction of organic and inorganic pollutants.

7.
Chemosphere ; 289: 133092, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34856239

RESUMEN

In order to enhance the photocatalytic performance and stability, the various proportions of the size controlled cerium oxide (CeO2) nanoparticles were dispersed at the pre-synthesized ZnO. Although, the expected dual absorption onsets, probably due to the diminutive difference between the bandgaps of CeO2 (∼2.9 eV) and ZnO (∼3.1 eV), were not observed however, a blue shift in the bandgap energy of ZnO was witnessed with the increasing surface density of CeO2 particles. The delayed excitons recombination process with the increasing concentration of CeO2 nanoparticles was verified by the PL spectra. The structural investigation by Raman and XRD analysis revealed the surface attachment of CeO2 particles without altering the rock-salt lattice of ZnO. The morphological and fine microstructural analysis established the uniform distribution of evenly sized CeO2 particles at the surface of ZnO with the discrete fringe patterns of both the entities whereas the XPS analysis confirmed the majority of Ce4+ in dispersed CeO2. In comparison to pure ZnO, cyclic voltammetric (CV) analysis, under illumination, exposed the supportive role of surface residing CeO2 particles in eradicating the photo-corrosion of ZnO whereas the chronopotentiometry (CP) predicted the prolonged life-span of the excitons. Compared to pure ZnO, an appreciably high activity was revealed for 10% CeO2 loading as compared to pure ZnO for the removal of mono and di-nitrophenol derivatives and their mixtures under natural sunlight exposure. The variations in the removal rates in the mixture as compared to individual nitrophenol exposed the structure-based priority of ROS for the respective phenol. The significantly enhanced photocatalytic activity of the composite catalysts revealed the incremental role of surface-mounted CeO2 entities in boosting the generation of ROS under sunlight irradiation. The experimental observations were correlated and compiled to establish the mechanism of the removal process.


Asunto(s)
Nanopartículas , Óxido de Zinc , Catálisis , Luz Solar
8.
Chemosphere ; 291(Pt 3): 133010, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34813848

RESUMEN

In the area of water pollution treatment, the coupling of biopolymers with metal/metal nanoparticles is getting a lot of interest these days. Herein, carboxymethyl cellulose (CMC) beads and chitosan (Cs) coated CMC beads were employed as a support for copper nanoparticles, (Cu/CMC) and (Cu/Cs@CMC), respectively. Following that, a reducing agent (NaBH4) was used to convert Cu/CMC and Cu/Cs@CMC beads to zero valent. The developed beads were employed for catalytic reductions of nitrophenol, dyes, and potassium hexacyanoferrate (III) in their mixed solution with NaBH4. Cu/Cs@CMC beads were more efficient compared to Cu/CMC beads toward selected pollutants. The reduction rate constants of 4-NP, MO, EY and K3[Fe(CN)6] by utilizing Cu/Cs@CMC were 3.8 × 10-1, 4.0 × 10-1, 1.4 × 10-1 and 4.48 × 10-1 min-1, respectively. Further, the catalytic activity of the Cu/Cs@CMC beads were optimized using 4-NP as a model compound for this study. Cu/Cs@CMC beads were able to use up to three cycles compared to Cu/CMC beads without losing catalytic activity in the reduction of 4-NP, according to the recyclability and reusability study of both beads. The chitosan coating beads Cu/Cs@CMC was simply prepared and have good catalytic activity, recyclable, and more efficient than Cu/CMC beads due to their high strength and stability.


Asunto(s)
Quitosano , Nanopartículas del Metal , Carboximetilcelulosa de Sodio , Nitrofenoles
9.
Biology (Basel) ; 10(11)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34827068

RESUMEN

The facile bio-fabrication of zinc oxide (ZnO) nanoparticles (NPs) is described in this study using an aqueous leaf extract of Salvia officinalis L. as an efficient stabilizing/capping agent. Biosynthesis of nanomaterials using phytochemicals present in the plants has received great attention and is gaining significant importance as a possible alternative to the conventional chemical methods. The properties of the bio-fabricated ZnONPs were examined by different techniques, such as UV-visible spectroscopy, X-ray diffraction spectroscopy (XRD), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and thermogravimetric/differential scanning calorimetry analysis (TGA/DTG). The photocatalytic activity of ZnONPs was investigated against methyl orange (MO) under UV light irradiation. Under optimum experimental conditions, ZnONPs exhibited 92.47% degradation of MO. Furthermore, the antifungal activity of bio-fabricated ZnONPs was determined against different clinical Candida albicans isolates following standard protocols of broth microdilution and disc diffusion assay. The susceptibility assay revealed that ZnONPs inhibit the growth of all the tested fungal isolates at varying levels with MIC values ranging from 7.81 to 1.95 µg/mL. Insight mechanisms of antifungal action appeared to be originated via inhibition of ergosterol biosynthesis and the disruption of membrane integrity. Thus, it was postulated that bio-fabricated ZnONPs have sustainable applications in developing novel antifungal agents with multiple drug targets. In addition, ZnONPs show efficient photocatalytic efficiency without any significant catalytic loss after the catalyst was recycled and reused multiple times.

10.
Toxics ; 9(5)2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-34064502

RESUMEN

The green chemistry method is the preferred approach for synthesizing metal and metal oxide nanoparticles because of its low toxicity, environmental friendliness, feasibility, and safety to human health compared with other chemical or physical methods. The present work reports the phytogenic synthesis of palladium nanoparticles (PdNPs) using an aqueous extract of Matricaria recutita (Chamomile). The phytochemical-mediated synthesis of PdNPs is an economical and eco-friendly approach without using toxic elements as reducing and capping or stabilizing agents. The UV-visible spectroscopic characterization was initially used to confirm the preparation of PdNPs using an aqueous extract of M. recutita flowers as a bioreductant for the reduction of Pd2+ to Pd0 without using any extra capping and reducing agents. The appearance of surface plasmon resonance (SPR) peak at 286 nm confirmed the formation of M. recutita extract-based PdNPs. Furthermore, the PdNPs were characterized by TEM, SEM, EDX, XRD, XPS, and FTIR to confirm their proper synthesis. The thermogravimetric analysis (TGA) was implemented to interpret the decomposition pattern and thermal stability of as-synthesized PdNPs. The biosynthesized PdNPs were further applied as a nanocatalyst in degradation of an azo dye Congo red (CR) in the presence of NaBH4. The catalytic reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) was also investigated in the presence of NaBH4. All the catalytic reactions were performed in water, and no significant loss in catalytic activity was observed after recovery and reusability of the biosynthesized PdNPs.

11.
Environ Sci Pollut Res Int ; 28(29): 38476-38496, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33733409

RESUMEN

A novel nanocomposite bead based on polymeric matrix of carboxymethyl cellulose and copper oxide-nickel oxide nanoparticles was synthesized, characterized, and applied for adsorptive removal of inorganic and organic contaminants at trace level of part per million (mgL-1) from aqueous sample. Carboxymethyl cellulose/copper oxide-nickel oxide (CMC/CuO-NiO) adsorbent beads were selective toward the removal of Pb(II) among other metal ions. The removal percentage of Pb(II) was more than 99% with 3 mgL-1. The waste beads after Pb (II) adsorption (Pb@CMC/CuO-NiO) and CMC/CuO-NiO nanocomposite beads were employed as adsorbents for removing of various dyes. It was found that Pb@CMC/CuO-NiO can be reused as adsorbent for the removal of Congo Red (CR), while CMC/CuO-NiO nanocomposite beads were more selective for removal of Eosin Yellow (EY) from aqueous media. The adsorption of CR and EY was optimized, and the removal percentages were 93% and 96.4%, respectively. The influence of different parameters was studied on the uptake capacity of Pb(II), CR, and EY, and lastly, the CMC/CuO-NiO beads exhibited responsive performance in relation to pH and other parameters. Thus, the prepared CMC/CuO-NiO beads were found to be a smart material which is effective and played super adsorption performance in the removal of Pb(II), CR, and EY from aqueous solution. These features make CMC/CuO-NiO beads suitable for numerous scientific and industrial applications and may be used as an alternative to high-cost commercial adsorbents.


Asunto(s)
Contaminantes Ambientales , Nanocompuestos , Contaminantes Químicos del Agua , Adsorción , Carboximetilcelulosa de Sodio , Cobre , Cinética , Níquel , Óxidos
12.
Int J Biol Macromol ; 167: 101-116, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33220377

RESUMEN

Carboxymethyl cellulose/copper oxide-nickel oxide (CMC/CuO-NiO) nanocomposite beads were prepared by facile, simple and environmentally friendly method. Initially, CuO-NiO was prepared and applied for the catalytic reduction of 4-nitrophenol (4-NP). The results showed that CuO-NiO demonstrate high catalytic activity toward the reduction of 4-NP to 4-aminophenol (4-AP) with a rate constant of 2.97 × 10-2 s-1. Further, CuO-NiO were well-dispersed in the polymeric matrix of carboxymethyl cellulose to prepare CMC/CuO-NiO beads. CMC/CuO-NiO nanocomposite beads were also applied to catalyze the reduction of potassium ferrocyanide (K3Fe (CN)6), 4-NP, Congo red (CR) and Eosin yellow (EY) in the presence of sodium borohydride. Experimental data indicated that CMC/CuO-NiO nanocomposite has higher catalytic activity and high rate constant compared to CuO-NiO. The rate constant found to be 6.88 × 10-2, 6.27 × 10-2, 1.89 × 10-2 and 2.43 × 10-2 for K3Fe(CN)6, 4-NP, CR and EY, respectively, using 5 mg CMC/CuO-NiO beads. FE-SEM, EDX, FTER, XRD and XPS were used to characterize the nanocomposites. CMC/CuO-NiO beads catalytically reduced up to 95-99% of K3Fe(CN)6, 4-NP, CR and EY within 40, 60, 120 and 120 s. CMC/CuO-NiO beads were found more selective for the reduction of 4-NP. The catalytic reduction performance of CMC/CuO-NiO beads was optimized by studying the influence of different parameters on the catalytic reduction of 4-NP. Hence, the effective and super catalytic performance toward the reduction of different organic and inorganic pollutants makes CMC/CuO-NiO beads a smart material and suitable for numerous scientific and industrial applications and may be used as an alternative to high-cost commercial catalysts.


Asunto(s)
Carboximetilcelulosa de Sodio/química , Contaminantes Ambientales/química , Nanocompuestos/química , Oxidación-Reducción , Catálisis , Fenómenos Químicos , Metales/química , Microesferas , Modelos Químicos , Nanocompuestos/ultraestructura , Análisis Espectral
13.
Chemosphere ; 265: 129135, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33302195

RESUMEN

The surface of the g-C3N4 was altered by impregnating W6+ ions that transformed to homogeneously coated oxide layer by a calcination process. An enhanced absorption and the suppressed de-excitation in the emission spectra, with the increasing W6+ loading, exposed the supporting role of the coated layer in extending the spectral response as well as the prolonged life span of excitons. The same was further supported by electrochemical impedance spectroscopy (EIS). The XRD and XPS analysis revealed the coated layer as highly crystalline pure phase monoclinic WO3 with the majority of impregnated tungsten ions in 6+ oxidation state respectively, whereas the FESEM and HRTEM analysis substantiated the uniformity of the coated layer with the interlayer spacing of the 0.369 nm. Additionally, the probable formation of individual WO3 nanoparticles or clusters was ruled out. The as-synthesized impregnated photocatalysts, in comparison to pure g-C3N4, were subjected to natural sunlight exposure for the photocatalytic removal of chlorophenol derivatives (2-CP, 3-CP, 4-CP, 2,3-DCP, 2,4-DCP, 2,4,6-TCP and PCP) that revealed the 5 wt% coating as the optimum level for significant removal. The progress of the photocatalytic process was monitored by periodic HPLC analysis whereas ion chromatography (IC) was used for the estimation of released ions. The mineralization capability of the as-synthesized W6+ coated catalysts was measured by the time scale TOC measurements. As the formation of intermediates was indicated in HPLC analysis, selected samples were subjected to GC-MS analysis for the identification of the nature of intermediates. The variable degree of removal of chlorophenol derivatives signified the role of the position and orientation of Cl group. The kinetics of the removal process was evaluated with the calculation of rate constants. The results extracted from the analytical tools and the associated band edge potentials were correlated to speculate the probable mechanism as well as the identification of major reactive oxygen species (ROS) involved in the removal process.


Asunto(s)
Clorofenoles , Catálisis , Clorofenoles/análisis , Óxidos , Luz Solar , Tungsteno
14.
Int J Biol Macromol ; 159: 276-286, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32437809

RESUMEN

In this project, cerium oxide-cobalt oxide (CeO2-Co2O3) nanocomposite-based material have been simply synthesized and intercalated to chitosan (CH) hydrogel to prepare CH/CeO2-Co2O3 nanocomposite hydrogel. CH/CeO2-Co2O3 nanocomposite was applied to nitrophenols reduction where it displayed perfect catalytic activity for 4-nitrophenol as compared to 2-nitrophenol and 2,6-dinitrophenol. Various factors were tested for optimization of catalytic removal approach. Farther, CH/CeO2-Co2O3 nanocomposite catalyst was coated on cotton cloth (CC) as support, which provided high catalytic performance even after reusing three times. CeO2-Co2O3 nanocomposites was also employed as electrochemical sensor where CeO2-Co2O3 was coated on pencil-graphite lead electrode (PGLE) and glassy carbon electrode (GCE) and used as working electrodes to detect different nitrophenols electrochemically via cyclic voltammetry. CeO2-Co2O3 was more selective toward 4-nitrophenol and the reduction peak of 4-nitrophenol was much more enhanced with increase in concentration ranging from 11.80 to 48.75 µM. The detection limit was found to be 0.46 µM (S/N = 5). Thus, the prepared materials were selective for detection and removal of 4-nitrophenol. Various factors were tested to optimize best conditions for developed nanocomposite materials in electrochemical sensing and catalytic removal approaches. Thus, it is expected that the designed nanocomposite will be able to employ as promising material for providing clean water.


Asunto(s)
Quitosano/química , Técnicas Electroquímicas , Contaminantes Ambientales/química , Nanocompuestos/química , Nanogeles/química , Compuestos Orgánicos/química , Catálisis , Técnicas de Química Sintética , Contaminantes Ambientales/análisis , Concentración de Iones de Hidrógeno , Límite de Detección , Nanocompuestos/ultraestructura , Nitrofenoles/química , Compuestos Orgánicos/análisis , Espectroscopía Infrarroja por Transformada de Fourier , Análisis Espectral , Difracción de Rayos X
15.
Environ Sci Pollut Res Int ; 27(5): 5408-5417, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31845276

RESUMEN

Iron oxide-titanium oxide (Fe2O3-TiO2) nanoparticles were developed as an effective adsorbent in order to extract and remove lanthanum ions selectively from aqueous media. Fe2O3-TiO2 nanoparticles were prepared by simple hydrothermal method and structurally characterized using FESEM, EDS, XRD, FTIR, and BET techniques. The analytical potential of Fe2O3-TiO2 nanoparticles was interpreted by applying the kinetic and isotherm models. The maximum static uptake capacity was 89.63 mgg- 1 at pH 7. Adsorption isotherm data evinced that a monolayer adsorption occurred on a homogeneous adsorbent surface which is compatible with Langmuir isotherm model. Data acquired from kinetic models study proved that La (III) adsorption onto Fe2O3-TiO2 nanoparticles followed a pseudo-second-order kinetic equation. Thermodynamic study exhibited that a spontaneous process is favorable for adsorption mechanism of La (III) on Fe2O3-TiO2 nanoparticles. Moreover, the existence of different coexisting ions did not influence the extraction of La (III). Finally, the recommended methodology was applied on several environmental samples.


Asunto(s)
Compuestos Férricos/química , Lantano , Nanopartículas , Titanio/química , Adsorción , Cinética
16.
Int J Biol Macromol ; 131: 666-675, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30885731

RESUMEN

In this study, we proficiently designed metal nanoparticles embedded in chitosan biopolymeric matrices, which have the ability to be employed simultaneously for the recognition and complete reduction of 4-nitroaniline. Copper nanoparticles embedded chitosan (CuNPs-CH) were coated on glassy carbon electrode to design an efficient electrochemical sensor for 4-nitroaniline. The sensing ability of CuNPs-CH modified electrode toward 4-nitroaniline was assessed by cyclic voltammetry, amperometry and chronoamperometry at working potential of -0.76 V and pH 7.0, while the complete reduction of 4-nitroaniline was analyzed by UV-visible spectrophotometer. The sensing features of CuNPs-CH modified electrode include a sensitivity of -8.166 µA mM-1 cm-2, and detection limit of 0.37 µM. The catalytic ability of CuNPs-CH for 4-nitroaniline reduction reaction was investigated. The results displayed that 4-nitroaniline completely transformed to diaminobenzene in short contact time with a rate constant of 7.51 × 10-3 s-1. The reduction aptitude of CuNPs-CH was also examined toward 4-nitrophenol and rhodamine B; however, the designed system was more efficient toward 4-nitroaniline. The developed approach offered a new methodology for simultaneous detection and reduction of 4-nitroaniline simply for environmental safety purposes.


Asunto(s)
Compuestos de Anilina/química , Quitosano/química , Cobre/química , Nanopartículas del Metal/química , Técnicas Biosensibles , Catálisis , Técnicas Electroquímicas , Electroquímica , Electrodos , Nanopartículas del Metal/ultraestructura
17.
Int J Biol Macromol ; 107(Pt A): 668-677, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28919532

RESUMEN

Water contamination by toxic compounds has become one of the most serious problems worldwide. Catalytic reduction using metal nanoparticles offer opportunities for environmental benefits. In this study, cellulose acetate-ferric oxide nanocomposite (CA/Fe2O3) was prepared and used as support for metal nanoparticles. After adsorption of Ag, Cu or Ni ions from aqueous solutions, metal ions associated with CA/Fe2O3 were treated with sodium borohydride to prepare Ag, Cu and Ni nanoparticles loaded CA/Fe2O3. The CA/Fe2O3 supported Ag, Cu or Ni nanoparticles was evaluated as a catalyst for pollutants degradation. Silver nanoparticles (Ag@CA/Fe2O3) exhibit remarkable decomposition for methyl orange dye and p-nitrophenol in short time. The rate constant for methyl orange and p-nitrophenol were 8.58×10-3 and 4.77×10-3s-1, respectively. Besides the good catalytic activities of Ag@CA/Fe2O3, the catalyst could be easily recovered from the reaction medium by pulling the catalyst after completion of the reduction reaction. The recovered catalyst can be recycled several times if their exposure time to air was minimal.


Asunto(s)
Compuestos Azo/química , Celulosa/análogos & derivados , Compuestos Férricos/química , Nanocompuestos/química , Nitrofenoles/química , Contaminantes Químicos del Agua/química , Adsorción , Compuestos Azo/aislamiento & purificación , Borohidruros/química , Catálisis , Celulosa/química , Cobre/química , Equipo Reutilizado , Agua Dulce/química , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Nanocompuestos/ultraestructura , Níquel/química , Nitrofenoles/aislamiento & purificación , Oxidación-Reducción , Plata/química , Contaminantes Químicos del Agua/aislamiento & purificación
18.
PLoS One ; 12(2): e0172218, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28245225

RESUMEN

In the present work, bismuth oxychloride nanoparticles-a light harvesting semiconductor photocatalyst-were synthesized by a facile hydrolysis route, with sodium bismuthate and hydroxylammonium chloride as the precursor materials. The as-synthesized semiconductor photocatalysts were characterized using X-ray diffraction analysis, Fourier transform infra-red spectroscopy, Raman spectroscopy, Field emission scanning electron microscopy, X-ray photoelectron spectroscopy and Photoluminescence spectroscopy techniques. The crystal structure, morphology, composition, and optical properties of these facile synthesized bismuth oxychloride nanoparticles (BiOCl NPs) were compared to those of traditional bismuth oxychloride. In addition, the photocatalytic performance of facile-synthesized BiOCl NPs and traditional BiOCl, as applied to the removal of hazardous organic dyes under visible light illumination, is thoroughly investigated. Our results reveal that facile-synthesized BiOCl NPs display strong UV-Vis light adsorption, improved charge carrier mobility and an inhibited rate of charge carrier recombination, when compared to traditional BiOCl. These enhancements result in an improved photocatalytic degradation rate of hazardous organic dyes under UV-Vis irradiance. For instance, the facile-synthesized BiOCl NPs attained 100% degradation of methylene blue and methyl orange dyes in approximately 30 mins under UV-Vis irradiation, against 55% degradation for traditional BiOCl under similar experimental conditions.


Asunto(s)
Bismuto/química , Nanopartículas , Compuestos Orgánicos/química , Semiconductores , Contaminantes Químicos del Agua/química , Compuestos Azo/química , Catálisis , Hidrólisis , Luz , Azul de Metileno/química , Fotoquímica , Espectroscopía de Fotoelectrones , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Rayos Ultravioleta , Contaminación del Agua , Difracción de Rayos X
19.
Photochem Photobiol ; 91(2): 265-71, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25400159

RESUMEN

Methyl tert-butyl ether is a commonly used fuel oxygenate that is present in gasoline. It was introduced to eliminate the use of leaded gasoline and to improve the octane quality because it aids in the complete combustion of fuel by supplying oxygen during the combustion process. Over the past decade, the use of MTBE has increased tremendously worldwide. For obvious reasons relating to accidental spillage, MTBE started to appear as an environmental and human health threat because of its nonbiodegradable nature and carcinogenic potential, respectively. In this work, MTBE was degraded with the help of an advanced oxidation process through the use of zinc oxide as a photocatalyst in the presence of visible light. A mixture of 200 mg of zinc oxide in 350 mL of 50 ppm MTBE aqueous solution was irradiated with visible light for a given time. The complete degradation of MTBE was recorded, and approximately 99% photocatalytic degradation of 100 ppm MTBE solution was observed. Additionally, the photoactivity of 1% Pd-doped ZnO was tested under similar conditions to understand the effect of Pd doping on ZnO. Our results obtained under visible light irradiation are very promising, and they could be further explored for the degradation of several nondegradable environmental pollutants.


Asunto(s)
Electrones , Contaminantes Ambientales/química , Éteres Metílicos/química , Paladio/química , Fotólisis , Óxido de Zinc/química , Catálisis , Cinética , Luz , Nanopartículas/química , Nanopartículas/ultraestructura , Oxidación-Reducción , Soluciones , Termodinámica , Agua
20.
Chemistry ; 20(33): 10475-83, 2014 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-25044047

RESUMEN

Protoporphyrin IX-zinc oxide (PP-ZnO) nanohybrids have been synthesized for applications in photocatalytic devices. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and steady-state infrared, absorption, and emission spectroscopies have been used to analyze the structural details and optical properties of these nanohybrids. Time-resolved fluorescence and transient absorption techniques have been applied to study the ultrafast dynamic events that are key to photocatalytic activities. The photocatalytic efficiency under visible-light irradiation in the presence of naturally abundant iron(III) and copper(II) ions has been found to be significantly retarded in the former case, but enhanced in the latter case. More importantly, femtosecond (fs) transient absorption data have clearly demonstrated that the residence of photoexcited electrons from the sensitizer PP in the centrally located iron moiety hinders ground-state bleach recovery of the sensitizer, affecting the overall photocatalytic rate of the nanohybrid. The presence of copper(II) ions, on the other hand, offers additional stability against photobleaching and eventually enhances the efficiency of photocatalysis. In addition, we have also explored the role of UV light in the efficiency of photocatalysis and have rationalized our observations from femtosecond- to picosecond-resolved studies.


Asunto(s)
Metales/química , Nanoestructuras/química , Porfirinas/química , Óxido de Zinc/química , Catálisis , Luz , Azul de Metileno/química , Fotólisis , Espectroscopía Infrarroja por Transformada de Fourier , Análisis Espectral , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA