Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Adv Mater ; : e2405868, 2024 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-39463044

RESUMEN

Microgels show advantages over bulk hydrogels due to convenient control over microgel size and composition, and the ability to use microgels to modularly construct larger hierarchical scaffold hydrogel materials. Here, supramolecular chemistry is used to formulate supramolecular polymer, dynamic microgels solely held together by non-covalent interactions. Four-fold hydrogen bonding ureido-pyrimidinone (UPy) monomers with different functionalities are applied to precisely tune microgel properties in a modular way, via variations in monomer concentration, bifunctional crosslinker ratio, and the incorporation of supramolecular dyes and peptides. Functionalization with a bioactive supramolecular cell-adhesive peptide induced selectivity of cells toward the bioactive microgels over non-active, non-functionalized versions. Importantly, the supramolecular microgels can also be applied as microscale building blocks into supramolecular bulk macrogels with tunable dynamic behavior: a robust and weak macrogel, where the micro- and macrogels are composed of similar molecular building blocks. In a robust macrogel, microgels act as modular micro-building blocks, introducing multi-compartmentalization, while in a weak macrogel, microgels reinforce and enhance mechanical properties. This work demonstrates the potential to modularly engineer higher-length-scale structures using small molecule supramolecular monomers, wherein microgels serve as versatile and modular micro-building units.

2.
Nanoscale ; 16(35): 16290-16312, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39161293

RESUMEN

The extracellular matrix (ECM) has evolved around complex covalent and non-covalent interactions to create impressive function-from cellular signaling to constant remodeling. A major challenge in the biomedical field is the de novo design and control of synthetic ECMs for applications ranging from tissue engineering to neuromodulation to bioelectronics. As we move towards recreating the ECM's complexity in hydrogels, the field has taken several approaches to recapitulate the main important features of the native ECM (i.e. mechanical, bioactive and dynamic properties). In this review, we first describe the wide variety of hydrogel systems that are currently used, ranging from fully natural to completely synthetic to hybrid versions, highlighting the advantages and limitations of each class. Then, we shift towards supramolecular hydrogels that show great potential for their use as ECM mimics due to their biomimetic hierarchical structure, inherent (controllable) dynamic properties and their modular design, allowing for precise control over their mechanical and biochemical properties. In order to make the next step in the complexity of synthetic ECM-mimetic hydrogels, we must leverage the supramolecular self-assembly seen in the native ECM; we therefore propose to use supramolecular monomers to create larger, hierarchical, co-assembled hydrogels with complex and synergistic mechanical, bioactive and dynamic features.


Asunto(s)
Materiales Biocompatibles , Materiales Biomiméticos , Matriz Extracelular , Hidrogeles , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Hidrogeles/química , Materiales Biomiméticos/química , Materiales Biocompatibles/química , Humanos , Ingeniería de Tejidos , Animales
3.
J Mater Chem B ; 12(37): 9283-9288, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39171867

RESUMEN

Low molecular weight gels are formed via the self-assembly of small molecules into fibrous structures. In the case of hydrogels, these networks entrap large volumes of water, yielding soft materials. Such gels tend to have weak mechanical properties and a high permeability for cells, making them particularly appealing for regenerative medicine applications. Ureido-pyrimidinone (UPy) supramolecular gelators are self-assembling systems that have demonstrated excellent capabilities as biomaterials. Here, we combine UPy-gelators with another low molecular weight gelator, the functionalized dipeptide 2NapFF. We have successfully characterized these multicomponent systems on a molecular and bulk scale. The addition of 2NapFF to a crosslinked UPy hydrogel significantly increased hydrogel stiffness from 30 Pa to 1300 Pa. Small-angle X-ray scattering was used to probe the underlying structures of the systems and showed that the mixed UPy and 2NapFF systems resemble the scattering data produced by the pristine UPy systems. However, when a bifunctional UPy-crosslinker was added, the scattering was close to that of the 2NapFF only samples. The results suggest that the crosslinker significantly influences the assembly of the low molecular weight gelators. Finally, we analysed the biocompatibility of the systems using fibroblast cells and found that the cells tended to spread more effectively when the crosslinking species was incorporated. Our results emphasise the need for thorough characterisation at multiple length scales to finely control material properties, which is particularly important for developing novel biomaterials.


Asunto(s)
Hidrogeles , Pirimidinonas , Pirimidinonas/química , Ratones , Hidrogeles/química , Hidrogeles/síntesis química , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/síntesis química , Estructura Molecular , Urea/química , Técnicas de Cultivo de Célula , Fibroblastos/citología
4.
Biomacromolecules ; 25(8): 4686-4696, 2024 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-39059106

RESUMEN

Synthetic supramolecular polymers and hydrogels in water are emerging as promising biomaterials due to their modularity and intrinsic dynamics. Here, we introduce temperature sensitivity into the nonfunctionalized benzene-1,3,5-tricarboxamide (BTA-EG4) supramolecular system by incorporating a poly(N-isopropylacrylamide)-functionalized (BTA-PNIPAM) moiety, enabling 3D cell encapsulation applications. The viscous and structural properties in the solution state as well as the mechanical and dynamic features in the gel state of BTA-PNIPAM/BTA-EG4 mixtures were investigated and modulated. In the dilute state (c ∼µM), BTA-PNIPAM acted as a chain capper below the cloud point temperature (Tcp = 24 °C) but served as a cross-linker above Tcp. At higher concentrations (c ∼mM), weak or stiff hydrogels were obtained, depending on the BTA-PNIPAM/BTA-EG4 ratio. The mixture with the highest BTA-PNIPAM ratio was ∼100 times stiffer and ∼10 times less dynamic than BTA-EG4 hydrogel. Facile cell encapsulation in 3D was realized by leveraging the temperature-sensitive sol-gel transition, opening opportunities for utilizing this hydrogel as an extracellular matrix mimic.


Asunto(s)
Resinas Acrílicas , Hidrogeles , Temperatura , Hidrogeles/química , Resinas Acrílicas/química , Materiales Biocompatibles/química , Animales , Ratones , Benzamidas
5.
Macromolecules ; 57(14): 6606-6615, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39071041

RESUMEN

The cellular microenvironment is composed of a dynamic hierarchical fibrillar architecture providing a variety of physical and bioactive signals to the surrounding cells. This dynamicity, although common in biology, is a challenge to control in synthetic matrices. Here, responsive synthetic supramolecular monomers were designed that are able to assemble into hierarchical fibrous structures, combining supramolecular fiber formation via hydrogen bonding interactions, with a temperature-responsive hydrophobic collapse, resulting in cross-linking and hydrogel formation. Therefore, amphiphilic molecules were synthesized, composed of a hydrogen bonding ureido-pyrimidinone (UPy) unit, a hydrophobic alkyl spacer, and a hydrophilic oligo(ethylene glycol) tail. The temperature responsive behavior was introduced by functionalizing these supramolecular amphiphiles with a relatively short poly(N-isopropylacrylamide) (PNIPAM) chain (M n ∼ 2.5 or 5.5 kg/mol). To precisely control the assembly of these monomers, the length of the alkyl spacer between the UPy moiety and PNIPAM was varied in length. A robust sol-gel transition, with the dodecyl UPy-PNIPAM molecule, was obtained, with a network elasticity enhancing over 2000 times upon heating above room temperature. The UPy-PNIPAM compounds with shorter alkyl spacers were already hydrogels at room temperature. The sol-gel transition of the dodecyl UPy-PNIPAM hydrogelator could be tuned by the incorporation of different UPy-functionalized monomers. Furthermore, we demonstrated the suitability of this system for microfluidic cell encapsulation through a convenient temperature sol-gel transition. Our results indicate that this novel thermoresponsive supramolecular system offers a modular platform to study and guide single-cell behavior.

6.
J Am Chem Soc ; 146(26): 17539-17558, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38888174

RESUMEN

Hydrogels have emerged as a promising class of extracellular matrix (ECM)-mimicking materials in regenerative medicine. Here, we briefly describe current state-of-the-art of ECM-mimicking hydrogels, ranging from natural to hybrid to completely synthetic versions, giving the prelude to the importance of supramolecular interactions to make true ECM mimics. The potential of supramolecular interactions to create ECM mimics for cell culture is illustrated through a focus on two different supramolecular hydrogel systems, both developed in our laboratories. We use some recent, significant findings to present important design principles underlying the cell-material interaction. To achieve cell spreading, we propose that slow molecular dynamics (monomer exchange within fibers) is crucial to ensure the robust incorporation of cell adhesion ligands within supramolecular fibers. Slow bulk dynamics (stress-relaxation─fiber rearrangements, τ1/2 ≈ 1000 s) is required to achieve cell spreading in soft gels (<1 kPa), while gel stiffness overrules dynamics in stiffer gels. Importantly, this resonates with the findings of others which specialize in different material types: cell spreading is impaired in case substrate relaxation occurs faster than clutch binding and focal adhesion lifetime. We conclude with discussing considerations and limitations of the supramolecular approach as well as provide a forward thinking perspective to further understand supramolecular hydrogel-cell interactions. Future work may utilize the presented guidelines underlying cell-material interactions to not only arrive at the next generation of ECM-mimicking hydrogels but also advance other fields, such as bioelectronics, opening up new opportunities for innovative applications.


Asunto(s)
Matriz Extracelular , Hidrogeles , Matriz Extracelular/química , Hidrogeles/química , Humanos , Adhesión Celular , Materiales Biomiméticos/química
7.
J Mater Chem B ; 12(20): 4854-4866, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38682307

RESUMEN

Intracellular delivery of functional biomolecules by using supramolecular polymer nanostructures has gained significant interest. Here, various charged supramolecular ureido-pyrimidinone (UPy)-aggregates were designed and formulated via a simple "mix-and-match" method. The cellular internalization of these UPy-aggregates in the presence or absence of serum proteins by phagocytic and non-phagocytic cells, i.e., THP-1 derived macrophages and immortalized human kidney cells (HK-2 cells), was systematically investigated. In the presence of serum proteins the UPy-aggregates were taken up by both types of cells irrespective of the charge properties of the UPy-aggregates, and the UPy-aggregates co-localized with mitochondria of the cells. In the absence of serum proteins only cationic UPy-aggregates could be effectively internalized by THP-1 derived macrophages, and the internalized UPy-aggregates either co-localized with mitochondria or displayed as vesicular structures. While the cationic UPy-aggregates were hardly internalized by HK-2 cells and could only bind to the membrane of HK-2 cells. With adding and increasing the amount of serum albumin in the cell culture medium, the cationic UPy-aggregates were gradually taken up by HK-2 cells without anchoring on the cell membranes. It is proposed that the serum albumin regulates the cellular internalization of UPy-aggregates. These results provide fundamental insights for the fabrication of supramolecular polymer nanostructures for intracellular delivery of therapeutics.


Asunto(s)
Nanoestructuras , Polímeros , Humanos , Nanoestructuras/química , Polímeros/química , Pirimidinonas/química , Pirimidinonas/farmacología , Macrófagos/metabolismo , Línea Celular , Tamaño de la Partícula , Células THP-1 , Albúmina Sérica/química , Albúmina Sérica/metabolismo
8.
Mater Today Bio ; 26: 101021, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38545261

RESUMEN

Small bioactive peptide sequences derived from extracellular matrix proteins possess the ability to interact with cell receptors. As such, these peptide additives are excellent mimics to develop materials for 3D cell culture. Two types of supramolecular modified collagen type I mimicking peptide additives are presented; UPy-GFOGER (39 amino acids), with a novel superstructure, and the more simplistic UPy-DGEA (7 amino acids). Here, we studied the impact of the conformational differences between both peptide additives, on their biological performance. Various analyzing techniques demonstrated the ability of the supramolecular UPy-GFOGER to self-assemble into short nanofibers with brush-like outer features, suggesting trimerization into a triple helix. UPy-DGEA is a short additive without a complex structure. Since, collagen type I is a major component of the human corneal stroma, primary keratocytes (PKs) are encapsulated within the functionalized hydrogels to provide insights in the induced bioactivity of both additives. Incorporation of UPy-GFOGER supported an elongated morphology and (re-)differentiation of the encapsulated PKs, while tiny round-shaped cells were observed within the hydrogels functionalized with UPy-DGEA. This difference in biological success between UPy-GFOGER and UPy-DGEA indicates the difficulty of using short peptide additives without a complex structure to mimic the complex structure of natural collagen.

9.
Macromol Rapid Commun ; : e2300638, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38530968

RESUMEN

A polymer microarray based on the supramolecular ureido-pyrimidinone (UPy) moiety is fabricated to screen antimicrobial materials for their ability to support cell adhesion. UPy-functionalized additives, either cell-adhesive, antimicrobial or control peptides, are used, and investigated in different combinations at different concentrations, resulting in a library of 194 spots. These are characterized on composition and morphology to evaluate the microarray fabrication. Normal human dermal fibroblasts are cultured on the microarrays and cell adhesion to the spots is systematically analyzed. Results demonstrate enhanced cell adhesion on spots with combinations including the antimicrobial peptides. This study clearly proves the power of the high throughput approach in combination with supramolecular molecules, to screen additive libraries for desired biological response.

10.
Adv Healthc Mater ; 13(17): e2303888, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38451476

RESUMEN

Current vascular access options require frequent interventions. In situ tissue engineering (TE) may overcome these limitations by combining the initial success of synthetic grafts with long-term advantages of autologous vessels by using biodegradable grafts that transform into autologous vascular tissue at the site of implantation. Scaffolds (6 mm-Ø) made of supramolecular polycarbonate-bisurea (PC-BU), with a polycaprolactone (PCL) anti-kinking-coil, are implanted between the carotid artery and jugular vein in goats. A subset is bio-functionalized using bisurea-modified-Stromal cell-derived factor-1α (SDF1α) derived peptides and ePTFE grafts as controls. Grafts are explanted after 1 and 3 months, and evaluated for material degradation, tissue formation, compliance, and patency. At 3 months, the scaffold is resorbed and replaced by vascular neo-tissue, including elastin, contractile markers, and endothelial lining. No dilations, ruptures, or aneurysms are observed and grafts are successfully cannulated at termination. SDF-1α-peptide-biofunctionalization does not influence outcomes. Patency is lower in TE grafts (50%) compared to controls (100% patency), predominantly caused by intimal hyperplasia. Rapid remodeling of a synthetic, biodegradable vascular scaffold into a living, compliant arteriovenous fistula is demonstrated in a large animal model. Despite lower patency compared to ePTFE, transformation into autologous and compliant living tissue with self-healing capacity may have long-term advantages.


Asunto(s)
Prótesis Vascular , Cabras , Animales , Andamios del Tejido/química , Implantes Absorbibles , Fístula Arteriovenosa , Poliésteres/química , Arterias Carótidas/cirugía , Ingeniería de Tejidos/métodos , Quimiocina CXCL12/farmacología , Quimiocina CXCL12/metabolismo , Grado de Desobstrucción Vascular
11.
Nature ; 626(8001): 1011-1018, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38418913

RESUMEN

Liquid-liquid phase separation (LLPS) of biopolymers has recently been shown to play a central role in the formation of membraneless organelles with a multitude of biological functions1-3. The interplay between LLPS and macromolecular condensation is part of continuing studies4,5. Synthetic supramolecular polymers are the non-covalent equivalent of macromolecules but they are not reported to undergo LLPS yet. Here we show that continuously growing fibrils, obtained from supramolecular polymerizations of synthetic components, are responsible for phase separation into highly anisotropic aqueous liquid droplets (tactoids) by means of an entropy-driven pathway. The crowding environment, regulated by dextran concentration, affects not only the kinetics of supramolecular polymerizations but also the properties of LLPS, including phase-separation kinetics, morphology, internal order, fluidity and mechanical properties of the final tactoids. In addition, substrate-liquid and liquid-liquid interfaces proved capable of accelerating LLPS of supramolecular polymers, allowing the generation of a myriad of three-dimensional-ordered structures, including highly ordered arrays of micrometre-long tactoids at surfaces. The generality and many possibilities of supramolecular polymerizations to control emerging morphologies are demonstrated with several supramolecular polymers, opening up a new field of matter ranging from highly structured aqueous solutions by means of stabilized LLPS to nanoscopic soft matter.

12.
Tissue Eng Part A ; 30(15-16): 421-436, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38420632

RESUMEN

An essential aspect of cardiovascular in situ tissue engineering (TE) is to ensure balance between scaffold degradation and neo-tissue formation. We evaluated the rate of degradation and neo-tissue formation of three electrospun supramolecular bisurea-based biodegradable scaffolds that differ in their soft-block backbone compositions only. Scaffolds were implanted as interposition grafts in the abdominal aorta in rats, and evaluated at different time points (t = 1, 6, 12, 24, and 40 weeks) on function, tissue formation, strength, and scaffold degradation. The fully carbonate-based biomaterial showed minor degradation after 40 weeks in vivo, whereas the other two ester-containing biomaterials showed (near) complete degradation within 6-12 weeks. Local dilatation was only observed in these faster degrading scaffolds. All materials showed to some extent mineralization, at early as well as late time points. Histological evaluation showed equal and non-native-like neo-tissue formation after total degradation. The fully carbonate-based scaffolds lagged in neo-tissue formation, presumably as its degradation was (far from) complete at 40 weeks. A significant difference in vessel wall contrast enhancement was observed by magnetic resonance imaging between grafts with total compared with minimal-degraded scaffolds.


Asunto(s)
Prótesis Vascular , Ingeniería de Tejidos , Andamios del Tejido , Animales , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Ratas , Masculino , Aorta Abdominal , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología
13.
Chem Sci ; 15(2): 629-638, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38179539

RESUMEN

Viscoadaptation is an essential process in natural cells, where supramolecular interactions between cytosolic components drive adaptation of the cellular mechanical features to regulate metabolic function. This important relationship between mechanical properties and function has until now been underexplored in artificial cell research. Here, we have created an artificial cell platform that exploits internal supramolecular interactions to display viscoadaptive behavior. As supramolecular material to mimic the cytosolic component of these artificial cells, we employed a pH-switchable hydrogelator based on poly(ethylene glycol) coupled to ureido-pyrimidinone units. The hydrogelator was membranized in its sol state in giant unilamellar lipid vesicles to include a cell-membrane mimetic component. The resulting hydrogelator-loaded giant unilamellar vesicles (designated as HL-GUVs) displayed reversible pH-switchable sol-gel behavior through multiple cycles. Furthermore, incorporation of the regulatory enzyme urease enabled us to increase the cytosolic pH upon conversion of its substrate urea. The system was able to switch between a high viscosity (at neutral pH) and a low viscosity (at basic pH) state upon addition of substrate. Finally, viscoadaptation was achieved via the incorporation of a second enzyme of which the activity was governed by the viscosity of the artificial cell. This work represents a new approach to install functional self-regulation in artificial cells, and opens new possibilities for the creation of complex artificial cells that mimic the structural and functional interplay found in biological systems.

14.
Chemistry ; 30(6): e202303361, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38032693

RESUMEN

Water-soluble supramolecular polymers show great potential to develop dynamic biomaterials with tailored properties. Here, we elucidate the morphology, stability and dynamicity of supramolecular polymers derived from bisurea-based monomers. An accessible synthetic approach from 2,4-toluene diisocyanate (TDI) as the starting material is developed. TDI has two isocyanates that differ in intrinsic reactivity, which allows to obtain functional, desymmetrized monomers in a one-step procedure. We explore how the hydrophobic/hydrophilic ratio affects the properties of the formed supramolecular polymers by increasing the number of methylene units from 10 to 12 keeping the hydrophilic hexa(ethylene glycol) constant. All bisurea-based monomers form long, fibrous structures with 3-5 monomers in the cross-section in water, indicating a proper hydrophobic\hydrophilic balance. The stability of the supramolecular polymers increases with an increasing amount of methylene units, whereas the dynamic nature of the monomers decreases. The introduction of one Cy3 dye affords modified supramolecular monomers, which co-assemble with the unmodified monomers into fibrous structures. All systems show excellent water-compatibility and no toxicity for different cell-lines. Importantly, in cell culture media, the fibrous structures remain present, highlighting the stability of these supramolecular polymers in physiological conditions. The results obtained here motivate further investigation of these bisurea-based building blocks as dynamic biomaterial.


Asunto(s)
Materiales Biocompatibles , Polímeros , Polímeros/química , Materiales Biocompatibles/química , Línea Celular , Agua/química
15.
Macromol Biosci ; 24(1): e2300005, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36934315

RESUMEN

Local intraperitoneal drug administration is considered a challenging drug delivery route. The therapeutic efficiency is low, mainly due to rapid clearance of drugs. To increase the intraperitoneal retention time of specific drugs, a pH-sensitive supramolecular hydrogel that can act as a drug delivery vehicle is developed. To establish the optimal formulation of the hydrogel and to study its feasibility, safety, and tissue compatibility, in vitro, postmortem, and in vivo experiments are performed. In vitro tests reveal that a hydrogelator formulation with pH ≥ 9 results in a constant viscosity of 0.1 Pa·s. After administration postmortem, the hydrogel covers the parietal and visceral peritoneum with a thin, soft layer. In the subsequent in vivo experiments, 14 healthy rats are subjected to intraperitoneal injection with the hydrogel. Fourteen and 28 days after implantation, the animals are euthanized. Intraperitoneal exposure to the hydrogel is not resulted in significant weight loss or discomfort. Moreover, no macroscopic adverse effects or signs of organ damage are detected. In several intra-abdominal tissues, vacuolated macrophages are found indicating a physiological degradation of the synthetic hydrogel. This study demonstrates that the supramolecular hydrogel is safe for intraperitoneal application and that the hydrogel shows good tissue compatibility in rats.


Asunto(s)
Sistemas de Liberación de Medicamentos , Hidrogeles , Ratas , Animales , Hidrogeles/farmacología , Hidrogeles/química , Inyecciones Intraperitoneales , Inyecciones
16.
Macromol Biosci ; 24(1): e2300533, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38050925
17.
Chemistry ; 30(7): e202303194, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37967312

RESUMEN

Developing peptide-based materials with controlled morphology is a critical theme of soft matter research. Herein, we report the formation of a novel, patterned cross-ß structure formed by self-assembled C3 -symmetric peptide amphiphiles based on diphenylalanine and benzene-1,3,5-tricarboxamide (BTA). The cross-ß motif is an abundant structural element in amyloid fibrils and aggregates of fibril-forming peptides, including diphenylalanine. The incorporation of topological constraints on one edge of the diphenylalanine fragment limits the number of ß-strands in ß-sheets and leads to the creation of an unconventional offset-patterned cross-ß structure consisting of short 3×2 parallel ß-sheets stabilized by phenylalanine zippers. In the reported assembly, two patterned cross-ß structures bind parallel arrays of BTA stacks in a superstructure within a single-molecule-thick nanoribbon. In addition to a threefold network of hydrogen bonds in the BTA stack, each molecule becomes simultaneously bound by hydrogen bonds from three ß-sheets and four phenylalanine zippers. The diffuse layer of alkyl chains with terminal polar groups prevents the nanoribbons from merging and stabilizes cross-ß-structure in water. Our results provide a simple approach to the incorporation of novel patterned cross-ß motifs into supramolecular superstructures and shed light on the general mechanism of ß-sheet formation in C3 -symmetric peptide amphiphiles.


Asunto(s)
Amiloide , Péptidos , Estructura Secundaria de Proteína , Péptidos/química , Amiloide/química , Conformación Proteica en Lámina beta , Fenilalanina
18.
Commun Biol ; 6(1): 1166, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37964029

RESUMEN

Pliable microfibrous, bioresorbable elastomeric heart valve prostheses are investigated in search of sustainable heart valve replacement. These cell-free implants recruit cells and trigger tissue formation on the valves in situ. Our aim is to investigate the behaviour of these heart valve prostheses when exposed to the high-pressure circulation. We conducted a 12-month follow-up study in sheep to evaluate the in vivo functionality and neo-tissue formation of these valves in the aortic position. All valves remained free from endocarditis, thrombotic complications and macroscopic calcifications. Cell colonisation in the leaflets was mainly restricted to the hinge area, while resorption of synthetic fibers was limited. Most valves were pliable and structurally intact (10/15), however, other valves (5/15) showed cusp thickening, retraction or holes in the leaflets. Further research is needed to assess whether in-situ heart valve tissue engineering in the aortic position is possible or whether non-resorbable synthetic pliable prostheses are preferred.


Asunto(s)
Bioprótesis , Prótesis Valvulares Cardíacas , Animales , Ovinos , Válvula Aórtica/cirugía , Estudios de Seguimiento , Implantes Absorbibles , Diseño de Prótesis
19.
ACS Appl Mater Interfaces ; 15(42): 49022-49034, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37819736

RESUMEN

Because peritoneal metastasis (PM) from ovarian cancer is characterized by non-specific symptoms, it is often diagnosed at advanced stages. Pressurized intraperitoneal aerosol chemotherapy (PIPAC) can be considered a promising drug delivery method for unresectable PM. Currently, the efficacy of intraperitoneal (IP) drug delivery is limited by the off-label use of IV chemotherapeutic solutions, which are rapidly cleared from the IP cavity. Hence, this research aimed to improve PM treatment by evaluating a nanoparticle-loaded, pH-switchable supramolecular polymer hydrogel as a controlled release drug delivery system that can be IP nebulized. Moreover, a multidirectional nozzle was developed to allow nebulization of viscous materials such as hydrogels and to reach an even IP gel deposition. We demonstrated that acidification of the nebulized hydrogelator solution by carbon dioxide, used to inflate the IP cavity during laparoscopic surgery, stimulated the in situ gelation, which prolonged the IP hydrogel retention. In vitro experiments indicated that paclitaxel nanocrystals were gradually released from the hydrogel depot formed, which sustained the cytotoxicity of the formulation for 10 days. Finally, after aerosolization of this material in a xenograft model of PM, tumor progression could successfully be delayed, while the overall survival time was significantly increased compared to non-treated animals.


Asunto(s)
Dióxido de Carbono , Neoplasias Peritoneales , Animales , Humanos , Neoplasias Peritoneales/tratamiento farmacológico , Hidrogeles/química , Polímeros/química , Concentración de Iones de Hidrógeno
20.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37834098

RESUMEN

Antimicrobial peptides (AMPs) can kill bacteria by disrupting their cytoplasmic membrane, which reduces the tendency of antibacterial resistance compared to conventional antibiotics. Their possible toxicity to human cells, however, limits their applicability. The combination of magnetically controlled drug delivery and supramolecular engineering can help to reduce the dosage of AMPs, control the delivery, and improve their cytocompatibility. Lasioglossin III (LL) is a natural AMP form bee venom that is highly antimicrobial. Here, superparamagnetic iron oxide nanoparticles (IONs) with a supramolecular ureido-pyrimidinone (UPy) coating were investigated as a drug carrier for LL for a controlled delivery to a specific target. Binding to IONs can improve the antimicrobial activity of the peptide. Different transmission electron microscopy (TEM) techniques showed that the particles have a crystalline iron oxide core with a UPy shell and UPy fibers. Cytocompatibility and internalization experiments were carried out with two different cell types, phagocytic and nonphagocytic cells. The drug carrier system showed good cytocompatibility (>70%) with human kidney cells (HK-2) and concentration-dependent toxicity to macrophagic cells (THP-1). The particles were internalized by both cell types, giving them the potential for effective delivery of AMPs into mammalian cells. By self-assembly, the UPy-coated nanoparticles can bind UPy-functionalized LL (UPy-LL) highly efficiently (99%), leading to a drug loading of 0.68 g g-1. The binding of UPy-LL on the supramolecular nanoparticle system increased its antimicrobial activity against E. coli (MIC 3.53 µM to 1.77 µM) and improved its cytocompatible dosage for HK-2 cells from 5.40 µM to 10.6 µM. The system showed higher cytotoxicity (5.4 µM) to the macrophages. The high drug loading, efficient binding, enhanced antimicrobial behavior, and reduced cytotoxicity makes ION@UPy-NH2 an interesting drug carrier for AMPs. The combination with superparamagnetic IONs allows potential magnetically controlled drug delivery and reduced drug amount of the system to address intracellular infections or improve cancer treatment.


Asunto(s)
Antiinfecciosos , Péptidos Antimicrobianos , Animales , Humanos , Pirimidinonas/química , Escherichia coli , Portadores de Fármacos , Antiinfecciosos/farmacología , Nanopartículas Magnéticas de Óxido de Hierro , Iones , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA