Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 2752, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38307943

RESUMEN

The present work is aimed to assess the protective influence of zinc oxide resveratrol nanoparticles against oxidative stress-associated testicular dysfunction. The number of 50 male albino rats were randomly separated into five groups (n = 10): Group I, control: rats gavage distilled water orally; Group II, Levofloxacin: rats that administered Levofloxacin (LFX) softened in distilled water at a dosage of 40 mg/kg-1 BW orally every other day; Group III, Zn-RSV: rats administered with Zn-RSV (zinc oxide resveratrol in distilled water at a dose 20 mg/kg-1 BW orally every other day; Group IV, (LFX + Zn-RSV): rats that were administered with Levofloxacin along with Zn-RSV nPs; Group V, Levofloxacin + Zn: rats were administered with Levofloxacin and Zno at a dose of 20 mg/kg-1 BW orally every other day as mentioned before. This study lasted for 2 months. Sera were collected to assess luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone values. Testicular tissues were utilized to evaluate levels of superoxide dismutase (SOD), nitric oxide (NO), malondialdehyde (MDA), and catalase (CAT). Semen samples were utilized to measure their quality (motility, concentration, and vitality). Histopathological and immune histochemical techniques investigated the morphological changes in the testis. Rats treated with Levofloxacin showed significantly lower levels of serum LH, testosterone, FSH, testicular enzymatic NO, catalase, SOD, BAX, and BCL-2 immune reactivity and sperm quality but significantly greater testicular malondialdehyde and caspase-3 immuno-reactivity Compared to both control and zinc oxide resveratrol treatment. Zinc oxide resveratrol nanoparticles ameliorated the harmful side effects of Levofloxacin. Improvements were more pronounced in the co-treatment (LFX + Zn-RSV) Zinc oxide resveratrol group than in the co-treatment (LFX + Zno) Zinc oxide group. Zinc oxide resveratrol nanoparticles could be a possible solution for levofloxacin oxidative stress-induced fertility problems.


Asunto(s)
Nanopartículas , Enfermedades Testiculares , Óxido de Zinc , Humanos , Ratas , Masculino , Animales , Resveratrol/farmacología , Resveratrol/metabolismo , Óxido de Zinc/farmacología , Catalasa/metabolismo , Levofloxacino/farmacología , Ratas Wistar , Semen , Testículo/metabolismo , Estrés Oxidativo , Antioxidantes/metabolismo , Testosterona , Hormona Folículo Estimulante , Hormona Luteinizante , Superóxido Dismutasa/metabolismo , Malondialdehído/metabolismo , Agua/metabolismo
2.
Materials (Basel) ; 15(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36295184

RESUMEN

In this study, we enhanced the adhesion of graphene nanosheets to achieve homogeneous dispersion, consequently improving the electrical and thermal conductivity, coefficient of thermal expansion, and corrosion resistance with an aluminum matrix containing up to 1.5 wt. % graphene. First, 2.5 wt. % Al2O3 and varying ratios of graphene up to 1.5 wt. % were coated with 5 wt. % silver nanoparticles to metalize their surfaces. Predetermined portions of coated alumina and graphene were mixed with Al/10 wt. % Cu powder for 45 h. Mixed samples were compacted under 600 MPa and sintered at 565 °C in a vacuum furnace for 60 min with a low heating rate of 2 °C/min. The strengthening effect of the added materials on the density, microstructure, electrical and thermal conductivities, thermal expansion, and corrosion behavior of aluminum were investigated. Excellent adhesion and homogeneous dispersion of the investigated reinforcements were achieved. Three phenomena were observed: (1) an improvement in the densification, electrical and thermal conductivity, thermal expansion, and corrosion rate by adding 10 wt. % Cu to the aluminum matrix; (2) deterioration of the properties of Al/10 wt. % Cu with the addition of 2.5 wt. % alumina nanoparticles; and (3) improved properties with the addition of graphene nanosheets up to 1 wt. % and a decrease in property values beyond 1.5 wt. % graphene content due to the formation of agglomerations and pores in the metal matrix.

3.
Front Bioeng Biotechnol ; 10: 868111, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464726

RESUMEN

With extensive production and various applications of silica nanoparticles (SiNPs), there is a controversy regarding the ecotoxicological impacts of SiNPs. Therefore, the current study was aimed to assess the acute toxicity of silica nanoparticles in male Rattus norvegicus domestica after 24 and 96 h. Hematological, serum biochemical, stress biomarker, and immune-antioxidant parameters were addressed. Chemical composition, crystal structure, and the particle shape and morphology of SiNPs were investigated using XRD, FTIR, BET, UV-Vis, and SEM, while TEM was used to estimate the average size distribution of particles. For the exposure experiment, 48 male rats were divided into four groups (12 rat/group) and gavaged daily with different levels of zero (control), 5, 10, and 20 mg of SiNPs corresponding to zero, 31.25, 62.5, and 125 mg per kg of body weight. Sampling was carried out after 24 and 96 h. Relative to the control group, the exposure to SiNPs induced clear behavioral changes such as inactivity, lethargy, aggressiveness, and screaming. In a dose-dependent manner, the behavior scores recorded the highest values. Pairwise comparisons with the control demonstrated a significant (p < 0.05) decrease in hematological and immunological biomarkers [lysozymes and alternative complement activity (ACH50)] with a concomitant reduction in the antioxidant enzymes [catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD)] in all exposed groups to SiNPs. On the contrary, there was a noticeable increase in biochemical parameters (glucose, cortisol, creatinine, urea, low-density lipoproteins (LDL), high-density lipoproteins (HDL), total protein, and albumin) and hepato-renal indicators, including alkaline phosphatase (ALP), alanine aminotransferase (ALT), and aspartate aminotransferase (AST), of all SiNP-exposed groups. It was observed that SiNPs induced acute toxicity, either after 24 h or 96 h, post-exposure of rats to SiNPs evidenced by ethological changes, hepato-renal dysfunction, hyperlipemia, and severe suppression in hematological, protein, stress, and immune-antioxidant biomarkers reflecting an impaired physiological status. The obtained outcomes create a foundation for future research to consider the acute toxicity of nanoparticles to preserve human health and sustain the environment.

4.
Aquat Toxicol ; 235: 105828, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33901865

RESUMEN

Among toxic pollutants, Mercury (Hg) is a toxic heavy metal that induces harmful impacts on aquatic ecosystems directly and human being's health indirectly. This study confirmed the in vitro magnetic potential of magnetite Nano-Particles (Fe3O4 NPs) against waterborne Hg exposure-induced toxicity in Nile tilapia (Oreochromis niloticus). We further evaluate the safety profile of Fe3O4 NPs on fish growth, hemato-biochemical, histological parameters, bioaccumulation in muscles, and economy. Magnetite nanoparticles were characterized, adsorption loading to Hg ions was investigated, and testing different concentrations of Fe3O4 NPs (0.2, 0.4, 0.6, 0.8, and 1.0 mg/L) was applied to determine the highest concentration of adsorption. An in vivo experiment includes 120 fish with an average weight of 26.2 ± 0.26 g were randomly divided into 4 equal groups, each group had three replicates (n = 30 fish/group; 10 fish/ replicate). All groups were fed on a reference basal diet and the experiment was conducted for 30 days. The first group (G1) was allocated as a control. The second group (G2) received 1.0 mg/L aqueous suspension of Fe3O4 NPs. The third group (G3) was exposed to an aqueous solution of Hg ions at a concentration of 0.025 mg/L. Meanwhile, the fourth group (G4) acquired an aqueous suspension composed of a mixture of Hg ions and Fe3O4 NPs as previously mentioned. Throughout the exposure period, the clinical signs, symptoms, and mortalities were recorded. The Hg ions-exposed group induced the following consequences; reduced appetite resulting in reduced growth and less economic efficiency; microcytic hypochromic anemia, leukocytosis, lymphopenia, and neutrophilia; sharp and clear depletion in the immune indicators including lysozymes activity, immunoglobulin M (IgM), and Myeloperoxidase activities (MPO); significant higher levels of ALT, AST, urea, creatinine, and Superoxide dismutase (SOD); histological alterations of gill, hepatic and muscular tissues with strong expression of apoptotic marker (caspase 3); and a higher accumulation of Hg ions in the muscles. Surprisingly, Fe3O4 NPs-supplemented groups exhibited strong adsorption capacity against the Hg ions and mostly removed the Hg ions accumulation in the muscles. Also, the hematological, biochemical, and histological parameters were recovered. Thus, in order to assess the antitoxic role of Fe3O4 NPs against Hg and their safety on O. niloticus, and fill the gap of the research, the current context was investigated to evaluate the promising role of Fe3O4 NPs to prevent Hg-exposure-induced toxicity and protection of fish health, which ascertains essentiality for sustainable development of nanotechnology in the aquatic environment.


Asunto(s)
Cíclidos/metabolismo , Nanopartículas Magnéticas de Óxido de Hierro , Mercurio/metabolismo , Contaminantes Químicos del Agua/toxicidad , Animales , Antioxidantes/metabolismo , Bioacumulación , Dieta , Suplementos Dietéticos/análisis , Ecosistema , Óxido Ferrosoférrico/metabolismo , Branquias/metabolismo , Humanos , Hígado/metabolismo , Músculos/metabolismo , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA