Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cancer Discov ; 14(7): 1190-1205, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38588399

RESUMEN

Alterations in the RAS-MAPK signaling cascade are common across multiple solid tumor types and are a driver for many cancers. NST-628 is a potent pan-RAF-MEK molecular glue that prevents the phosphorylation and activation of MEK by RAF, overcoming the limitations of traditional RAS-MAPK inhibitors and leading to deep durable inhibition of the pathway. Cellular, biochemical, and structural analyses of RAF-MEK complexes show that NST-628 engages all isoforms of RAF and prevents the formation of BRAF-CRAF heterodimers, a differentiated mechanism from all current RAF inhibitors. With a potent and durable inhibition of the RAF-MEK signaling complex as well as high intrinsic permeability into the brain, NST-628 demonstrates broad efficacy in cellular and patient-derived tumor models harboring diverse MAPK pathway alterations, including orthotopic intracranial models. Given its functional and pharmacokinetic mechanisms that are differentiated from previous therapies, NST-628 is positioned to make an impact clinically in areas of unmet patient need. Significance: This study introduces NST-628, a molecular glue having differentiated mechanism and drug-like properties. NST-628 treatment leads to broad efficacy with high tolerability and central nervous system activity across multiple RAS- and RAF-driven tumor models. NST-628 has the potential to provide transformative clinical benefits as both monotherapy and vertical combination anchor.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Neoplasias , Inhibidores de Proteínas Quinasas , Humanos , Animales , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Quinasas raf/metabolismo , Quinasas raf/antagonistas & inhibidores , Línea Celular Tumoral , Proteínas ras/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo
2.
Nat Chem Biol ; 20(3): 373-381, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37919548

RESUMEN

The RAS-mitogen-activated protein kinase (MAPK) pathway includes KSR, RAF, MEK and the phospho-regulatory sensor 14-3-3. Specific assemblies among these components drive various diseases and likely dictate efficacy for numerous targeted therapies, including allosteric MEK inhibitors (MEKi). However, directly measuring drug interactions on physiological RAS-MAPK complexes in live cells has been inherently challenging to query and therefore remains poorly understood. Here we present a series of NanoBRET-based assays to quantify direct target engagement of MEKi on MEK1 and higher-order MEK1-bound complexes with ARAF, BRAF, CRAF, KSR1 and KSR2 in the presence and absence of 14-3-3 in living cells. We find distinct MEKi preferences among these complexes that can be compiled to generate inhibitor binding profiles. Further, these assays can report on the influence of the pathogenic BRAF-V600E mutant on MEKi binding. Taken together, these approaches can be used as a platform to screen for compounds intended to target specific complexes in the RAS-MAPK cascade.


Asunto(s)
Bioensayo , Proteínas Proto-Oncogénicas B-raf , Proteínas Proto-Oncogénicas B-raf/genética , Sistema de Señalización de MAP Quinasas , Inhibidores de Proteínas Quinasas/farmacología
3.
Nat Cancer ; 4(8): 1157-1175, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37537299

RESUMEN

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide. ß-Catenin (CTNNB1)-mutated HCC represents 30% of cases of the disease with no precision therapeutics available. Using chemical libraries derived from clinical multi-kinase inhibitor (KI) scaffolds, we screened HCC organoids to identify WNTinib, a KI with exquisite selectivity in CTNNB1-mutated human and murine models, including patient samples. Multiomic and target engagement analyses, combined with rescue experiments and in vitro and in vivo efficacy studies, revealed that WNTinib is superior to clinical KIs and inhibits KIT/mitogen-activated protein kinase (MAPK) signaling at multiple nodes. Moreover, we demonstrate that reduced engagement on BRAF and p38α kinases by WNTinib relative to several multi-KIs is necessary to avoid compensatory feedback signaling-providing a durable and selective transcriptional repression of mutant ß-catenin/Wnt targets through nuclear translocation of the EZH2 transcriptional repressor. Our studies uncover a previously unknown mechanism to harness the KIT/MAPK/EZH2 pathway to potently and selectively antagonize CTNNB1-mutant HCC with an unprecedented wide therapeutic index.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Ratones , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , beta Catenina/genética , beta Catenina/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Factores de Transcripción/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
4.
Mol Cell ; 82(22): 4192-4193, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36400004

RESUMEN

Spencer-Smith et al. (2022)1 investigate multiple functions of the BRAF cysteine-rich domain (CRD), finding distinct classes of RASopathy-associated BRAF mutations and unique features among RAF paralogs that may contribute to the spectrum of mutations observed in disease.


Asunto(s)
Proteínas Proto-Oncogénicas B-raf , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Mutación , Dominios Proteicos
5.
Nat Biotechnol ; 40(11): 1680-1689, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35697804

RESUMEN

Fast, high-throughput methods for measuring the level and duration of protective immune responses to SARS-CoV-2 are needed to anticipate the risk of breakthrough infections. Here we report the development of two quantitative PCR assays for SARS-CoV-2-specific T cell activation. The assays are rapid, internally normalized and probe-based: qTACT requires RNA extraction and dqTACT avoids sample preparation steps. Both assays rely on the quantification of CXCL10 messenger RNA, a chemokine whose expression is strongly correlated with activation of antigen-specific T cells. On restimulation of whole-blood cells with SARS-CoV-2 viral antigens, viral-specific T cells secrete IFN-γ, which stimulates monocytes to produce CXCL10. CXCL10 mRNA can thus serve as a proxy to quantify cellular immunity. Our assays may allow large-scale monitoring of the magnitude and duration of functional T cell immunity to SARS-CoV-2, thus helping to prioritize revaccination strategies in vulnerable populations.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Inmunidad Celular , Reacción en Cadena de la Polimerasa , Linfocitos T
7.
Methods Enzymol ; 667: 365-402, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35525547

RESUMEN

Pseudokinases often operate through functionally related enzymes and receptors. A prime example is the pseudokinase KSR (Kinase Suppressor of RAS), which can act as both an amplifier and inhibitor of members in the RAS-MAPK (Mitogen Activated Protein Kinase) signaling pathway. KSR is structurally related to the active RAF kinases over multiple domains; moreover, the pseudokinase domain of KSR forms physical and regulatory complexes with both RAF and MEK through distinct interfaces. Characterization of small molecule interactions on KSR has been used to uncover novel chemical tools and understand the mechanism of action of clinical drugs. Here, we elaborate on assays and structural methods for measuring binding at orthosteric and interfacial binding sites on KSR. These distinct small molecule pockets provide therapeutic paths for targeting KSR1 and KSR2 pseudokinases in disease, including in RAS and RAF mutant cancers.


Asunto(s)
Proteínas Quinasas , Proteínas Serina-Treonina Quinasas , Sitios de Unión , Conformación Molecular , Fosforilación , Proteínas Quinasas/química , Proteínas Proto-Oncogénicas c-raf/metabolismo , Transducción de Señal
8.
Dis Model Mech ; 15(2)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35244677

RESUMEN

Several cancers and rare genetic diseases are caused by dysregulation in the RAS signaling pathway. RAS proteins serve as molecular switches that regulate pathways involved in cellular growth, differentiation and survival. These pathways have been an intense area of investigation for four decades, since the initial identification of somatic RAS mutations linked to human cancers. In the past few years, inhibitors against several RAS effectors, as well as direct inhibitors of the K-RAS mutant G12C, have been developed. This Special Issue in DMM includes original Research articles on RAS-driven cancers and RASopathies. The articles provide insights into mechanisms and biomarkers, and evaluate therapeutic targets. Several articles also present new disease models, whereas others describe technologies or approaches to evaluate the function of RAS in vivo. The collection also includes a series of Review articles on RAS biology and translational aspects of defining and treating RAS-driven diseases. In this Editorial, we summarize this collection and discuss the potential impact of the articles within this evolving area of research. We also identify areas of growth and possible future developments.


Asunto(s)
Neoplasias , Proteínas ras , Antineoplásicos/farmacología , Humanos , Mutación/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Procesamiento Proteico-Postraduccional , Transducción de Señal/genética , Proteínas ras/efectos de los fármacos , Proteínas ras/genética , Proteínas ras/metabolismo
9.
Biochemistry ; 60(4): 289-302, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33440120

RESUMEN

Pseudokinases play important roles in signal transduction and cellular processes similar to those of catalytically competent kinases. However, pseudokinase pharmacological tractability and conformational space accessibility are poorly understood. Pseudokinases have only recently been suggested to adopt "inactive" conformations or interact with conformation-specific kinase inhibitors (e.g., type II compounds). In this work, the heavily substituted pseudokinase STRADα, which possesses a DFG → GLR substitution in the catalytic site that permits nucleotide binding while impairing divalent cation coordination, is used as a test case to demonstrate the potential applicability of conformation-specific, type II compounds to pseudokinase pharmacology. Integrated structural modeling is employed to generate a "GLR-out" conformational ensemble. Likely interacting type II compounds are identified through virtual screening against this ensemble model. Biophysical validation of compound binding is demonstrated through protein thermal stabilization and ATP competition. Localization of a top-performing compound through surface methylation strongly suggests that STRADα can adopt the "GLR-out" conformation and interact with compounds that comply with the standard type II pharmacophore. These results suggest that, despite a loss of catalytic function, some pseudokinases, including STRADα, may retain the conformational switching properties of conventional protein kinases.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/química , Adenosina Trifosfato/química , Humanos , Dominios Proteicos , Estabilidad Proteica
10.
Nature ; 588(7838): 509-514, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32927473

RESUMEN

The MAPK/ERK kinase MEK is a shared effector of the frequent cancer drivers KRAS and BRAF that has long been pursued as a drug target in oncology1, and more recently in immunotherapy2,3 and ageing4. However, many MEK inhibitors are limited owing to on-target toxicities5-7 and drug resistance8-10. Accordingly, a molecular understanding of the structure and function of MEK within physiological complexes could provide a template for the design of safer and more effective therapies. Here we report X-ray crystal structures of MEK bound to the scaffold KSR (kinase suppressor of RAS) with various MEK inhibitors, including the clinical drug trametinib. The structures reveal an unexpected mode of binding in which trametinib directly engages KSR at the MEK interface. In the bound complex, KSR remodels the prototypical allosteric pocket of the MEK inhibitor, thereby affecting binding and kinetics, including the drug-residence time. Moreover, trametinib binds KSR-MEK but disrupts the related RAF-MEK complex through a mechanism that exploits evolutionarily conserved interface residues that distinguish these sub-complexes. On the basis of these insights, we created trametiglue, which limits adaptive resistance to MEK inhibition by enhancing interfacial binding. Our results reveal the plasticity of an interface pocket within MEK sub-complexes and have implications for the design of next-generation drugs that target the RAS pathway.


Asunto(s)
Quinasas de Proteína Quinasa Activadas por Mitógenos/química , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Piridonas/química , Piridonas/farmacología , Pirimidinonas/química , Pirimidinonas/farmacología , Secuencia de Aminoácidos , Animales , Sitios de Unión/efectos de los fármacos , Humanos , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Modelos Moleculares , Unión Proteica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Especificidad por Sustrato , Quinasas raf/química , Quinasas raf/metabolismo
11.
Cell Chem Biol ; 27(7): 770-772, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32679092

RESUMEN

In this issue of Cell Chemical Biology, Pisa et al. (2020) find that haploid and diploid cells differentially develop resistance to the CENP-E inhibitor GSK923295. The results highlight the power of tumor cells to evade growth inhibition and potentially inform the design of next-generation CENP-E drugs to overcome resistance.


Asunto(s)
Diploidia , Neoplasias , Compuestos Bicíclicos Heterocíclicos con Puentes , Resistencia a Medicamentos , Haploidia , Humanos
12.
Mol Cancer Ther ; 18(9): 1506-1519, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31213506

RESUMEN

The approved kinase inhibitors for hepatocellular carcinoma (HCC) are not matched to specific mutations within tumors. This has presented a daunting challenge; without a clear target or mechanism, no straightforward path has existed to guide the development of improved therapies for HCC. Here, we combine phenotypic screens with a class of conformation-specific kinase inhibitors termed type II to identify a multikinase inhibitor, AD80, with antitumoral activity across a variety of HCC preclinical models, including mouse xenografts. Mass spectrometry profiling found a number of kinases as putative targets for AD80, including several receptor and cytoplasmic protein kinases. Among these, we found p38 gamma and delta as direct targets of AD80. Notably, a closely related analog of AD80 lacking p38δ/γ activity, but retaining several other off-target kinases, lost significant activity in several HCC models. Moreover, forced and sustained MKK6 → p38→ATF2 signaling led to a significant reduction of AD80 activity within HCC cell lines. Together with HCC survival data in The Cancer Genome Atlas and RNA-seq analysis, we suggest p38 delta and gamma as therapeutic targets in HCC and an "AD80 inhibition signature" as identifying those patients with best clinical outcomes.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Proteína Quinasa 12 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 13 Activada por Mitógenos/antagonistas & inhibidores , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales/métodos , Femenino , Compuestos Heterocíclicos de 4 o más Anillos/química , Compuestos Heterocíclicos de 4 o más Anillos/farmacocinética , Humanos , Estimación de Kaplan-Meier , Neoplasias Hepáticas/patología , Masculino , Ratones Endogámicos C57BL , Ratones Desnudos , Proteína Quinasa 12 Activada por Mitógenos/química , Proteína Quinasa 13 Activada por Mitógenos/química , Fenotipo , Polifarmacología
13.
PLoS Comput Biol ; 15(4): e1006878, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31026276

RESUMEN

Drosophila provides an inexpensive and quantitative platform for measuring whole animal drug response. A complementary approach is virtual screening, where chemical libraries can be efficiently screened against protein target(s). Here, we present a unique discovery platform integrating structure-based modeling with Drosophila biology and organic synthesis. We demonstrate this platform by developing chemicals targeting a Drosophila model of Medullary Thyroid Cancer (MTC) characterized by a transformation network activated by oncogenic dRetM955T. Structural models for kinases relevant to MTC were generated for virtual screening to identify unique preliminary hits that suppressed dRetM955T-induced transformation. We then combined features from our hits with those of known inhibitors to create a 'hybrid' molecule with improved suppression of dRetM955T transformation. Our platform provides a framework to efficiently explore novel kinase inhibitors outside of explored inhibitor chemical space that are effective in inhibiting cancer networks while minimizing whole body toxicity.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Neuroendocrino , Evaluación Preclínica de Medicamentos/métodos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas , Neoplasias de la Tiroides , Animales , Carcinoma Neuroendocrino/enzimología , Carcinoma Neuroendocrino/metabolismo , Biología Computacional/métodos , Drosophila , Modelos Biológicos , Neoplasias Experimentales/enzimología , Neoplasias Experimentales/metabolismo , Proteínas Quinasas/efectos de los fármacos , Proteínas Quinasas/metabolismo , Neoplasias de la Tiroides/enzimología , Neoplasias de la Tiroides/metabolismo
14.
Nat Chem Biol ; 14(3): 291-298, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29355849

RESUMEN

Synthetic tailoring of approved drugs for new indications is often difficult, as the most appropriate targets may not be readily apparent, and therefore few roadmaps exist to guide chemistry. Here, we report a multidisciplinary approach for accessing novel target and chemical space starting from an FDA-approved kinase inhibitor. By combining chemical and genetic modifier screening with computational modeling, we identify distinct kinases that strongly enhance ('pro-targets') or limit ('anti-targets') whole-animal activity of the clinical kinase inhibitor sorafenib in a Drosophila medullary thyroid carcinoma (MTC) model. We demonstrate that RAF-the original intended sorafenib target-and MKNK kinases function as pharmacological liabilities because of inhibitor-induced transactivation and negative feedback, respectively. Through progressive synthetic refinement, we report a new class of 'tumor calibrated inhibitors' with unique polypharmacology and strongly improved therapeutic index in fly and human MTC xenograft models. This platform provides a rational approach to creating new high-efficacy and low-toxicity drugs.


Asunto(s)
Carcinoma Neuroendocrino/metabolismo , Carcinoma/metabolismo , Drosophila/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Neoplasias de la Tiroides/metabolismo , Animales , Animales Modificados Genéticamente , Línea Celular Tumoral , Movimiento Celular , Modelos Animales de Enfermedad , Diseño de Fármacos , Femenino , Células HCT116 , Humanos , Masculino , Ratones , Ratones Endogámicos ICR , Simulación del Acoplamiento Molecular , Trasplante de Neoplasias , Isoformas de Proteínas , Proteínas Proto-Oncogénicas c-raf/metabolismo , Transducción de Señal , Sorafenib/farmacología
15.
CNS Oncol ; 6(3): 167-177, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28718326

RESUMEN

CNS Anticancer Drug Discovery and Development, 16-17 November 2016, Scottsdale, AZ, USA The 2016 second CNS Anticancer Drug Discovery and Development Conference addressed diverse viewpoints about why new drug discovery/development focused on CNS cancers has been sorely lacking. Despite more than 70,000 individuals in the USA being diagnosed with a primary brain malignancy and 151,669-286,486 suffering from metastatic CNS cancer, in 1999, temozolomide was the last drug approved by the US FDA as an anticancer agent for high-grade gliomas. Among the topics discussed were economic factors and pharmaceutical risk assessments, regulatory constraints and perceptions and the need for improved imaging surrogates of drug activity. Included were modeling tumor growth and drug effects in a medical environment in which direct tumor sampling for biological effects can be problematic, potential new drugs under investigation and targets for drug discovery and development. The long trajectory and diverse impediments to novel drug discovery, and expectation that more than one drug will be needed to adequately inhibit critical intracellular tumor pathways were viewed as major disincentives for most pharmaceutical/biotechnology companies. While there were a few unanimities, one consensus is the need for continued and focused discussion among academic and industry scientists and clinicians to address tumor targets, new drug chemistry, and more time- and cost-efficient clinical trials based on surrogate end points.

16.
Nature ; 537(7618): 112-116, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27556948

RESUMEN

Deregulation of the Ras-mitogen activated protein kinase (MAPK) pathway is an early event in many different cancers and a key driver of resistance to targeted therapies. Sustained signalling through this pathway is caused most often by mutations in K-Ras, which biochemically favours the stabilization of active RAF signalling complexes. Kinase suppressor of Ras (KSR) is a MAPK scaffold that is subject to allosteric regulation through dimerization with RAF. Direct targeting of KSR could have important therapeutic implications for cancer; however, testing this hypothesis has been difficult owing to a lack of small-molecule antagonists of KSR function. Guided by KSR mutations that selectively suppress oncogenic, but not wild-type, Ras signalling, we developed a class of compounds that stabilize a previously unrecognized inactive state of KSR. These compounds, exemplified by APS-2-79, modulate KSR-dependent MAPK signalling by antagonizing RAF heterodimerization as well as the conformational changes required for phosphorylation and activation of KSR-bound MEK (mitogen-activated protein kinase kinase). Furthermore, APS-2-79 increased the potency of several MEK inhibitors specifically within Ras-mutant cell lines by antagonizing release of negative feedback signalling, demonstrating the potential of targeting KSR to improve the efficacy of current MAPK inhibitors. These results reveal conformational switching in KSR as a druggable regulator of oncogenic Ras, and further suggest co-targeting of enzymatic and scaffolding activities within Ras-MAPK signalling complexes as a therapeutic strategy for overcoming Ras-driven cancers.


Asunto(s)
Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Oncogenes/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Quinazolinas/farmacología , Proteínas ras/antagonistas & inhibidores , Alelos , Regulación Alostérica/efectos de los fármacos , Línea Celular , Estabilidad de Enzimas/efectos de los fármacos , Humanos , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/química , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Modelos Moleculares , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Neoplasias/genética , Neoplasias/metabolismo , Oncogenes/genética , Fosforilación/efectos de los fármacos , Unión Proteica , Conformación Proteica/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Piridonas/farmacología , Pirimidinonas/farmacología , Quinasas raf/química , Quinasas raf/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
17.
Neuro Oncol ; 17 Suppl 6: vi1-26, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26403167

RESUMEN

Following the first CNS Anticancer Drug Discovery and Development Conference, the speakers from the first 4 sessions and organizers of the conference created this White Paper hoping to stimulate more and better CNS anticancer drug discovery and development. The first part of the White Paper reviews, comments, and, in some cases, expands on the 4 session areas critical to new drug development: pharmacological challenges, recent drug approaches, drug targets and discovery, and clinical paths. Following this concise review of the science and clinical aspects of new CNS anticancer drug discovery and development, we discuss, under the rubric "Accelerating Drug Discovery and Development for Brain Tumors," further reasons why the pharmaceutical industry and academia have failed to develop new anticancer drugs for CNS malignancies and what it will take to change the current status quo and develop the drugs so desperately needed by our patients with malignant CNS tumors. While this White Paper is not a formal roadmap to that end, it should be an educational guide to clinicians and scientists to help move a stagnant field forward.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Descubrimiento de Drogas , Glioma/tratamiento farmacológico , Meduloblastoma/tratamiento farmacológico , Animales , Ensayos Clínicos como Asunto , Modelos Animales de Enfermedad , Supervivencia sin Enfermedad , Determinación de Punto Final , Humanos , Resultado del Tratamiento
18.
Elife ; 42015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25986605

RESUMEN

Two ER membrane-resident transmembrane kinases, IRE1 and PERK, function as stress sensors in the unfolded protein response. IRE1 also has an endoribonuclease activity, which initiates a non-conventional mRNA splicing reaction, while PERK phosphorylates eIF2α. We engineered a potent small molecule, IPA, that binds to IRE1's ATP-binding pocket and predisposes the kinase domain to oligomerization, activating its RNase. IPA also inhibits PERK but, paradoxically, activates it at low concentrations, resulting in a bell-shaped activation profile. We reconstituted IPA-activation of PERK-mediated eIF2α phosphorylation from purified components. We estimate that under conditions of maximal activation less than 15% of PERK molecules in the reaction are occupied by IPA. We propose that IPA binding biases the PERK kinase towards its active conformation, which trans-activates apo-PERK molecules. The mechanism by which partial occupancy with an inhibitor can activate kinases may be wide-spread and carries major implications for design and therapeutic application of kinase inhibitors.


Asunto(s)
Adenosina Trifosfato/farmacología , Endorribonucleasas/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Respuesta de Proteína Desplegada/efectos de los fármacos , eIF-2 Quinasa/antagonistas & inhibidores , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/síntesis química , Animales , Bioensayo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Estrés del Retículo Endoplásmico , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Activación Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Expresión Génica , Genes Reporteros , Células HEK293 , Humanos , Ratones , Imitación Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción del Factor Regulador X , Radioisótopos de Azufre , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Respuesta de Proteína Desplegada/genética , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
19.
Nat Commun ; 5: 5408, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25403145

RESUMEN

Hepatitis C virus (HCV) replication is dependent on a liver-specific microRNA (miRNA), miR-122. A recent clinical trial reported that transient inhibition of miR-122 reduced viral titres in HCV-infected patients. Here we set out to better understand how miR-122 inhibition influences HCV replication over time. Unexpectedly, we observed the emergence of an HCV variant that is resistant to miR-122 knockdown. Next-generation sequencing revealed that this was due to a single nucleotide change at position 28 (G28A) of the HCV genome, which falls between the two miR-122 seed-binding sites. Naturally occurring HCV isolates encoding G28A are similarly resistant to miR-122 inhibition, indicating that subtle differences in viral sequence, even outside the seed-binding site, greatly influence HCV's miR-122 concentration requirement. In addition, we found that HCV itself reduces miR-122's activity in the cell, possibly through binding and sequestering miR-122. Our study provides insight into the interaction between miR-122 and HCV, including viral adaptation to reduced miR-122 bioavailability, and has implications for the development of anti-miR-122-based HCV drugs.


Asunto(s)
Hepacivirus/genética , Hepatitis C/metabolismo , MicroARNs/metabolismo , Mutación Puntual , Secuencia de Bases , Hepacivirus/fisiología , Hepatitis C/genética , Hepatitis C/virología , Humanos , Hígado/metabolismo , Hígado/virología , MicroARNs/genética , Datos de Secuencia Molecular , Replicación Viral
20.
ACS Chem Biol ; 8(9): 1931-8, 2013 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-23841803

RESUMEN

Engineered analog-sensitive (AS) protein kinases have emerged as powerful tools for dissecting phospho-signaling pathways, for elucidating the cellular function of individual kinases, and for deciphering unanticipated effects of clinical therapeutics. A crucial and necessary feature of this technology is a bioorthogonal small molecule that is innocuous toward native cellular systems but potently inhibits the engineered kinase. In order to generalize this method, we sought a molecule capable of targeting divergent AS-kinases. Here we employ X-ray crystallography and medicinal chemistry to unravel the mechanism of current inhibitors and use these insights to design the most potent, selective, and general AS-kinase inhibitors reported to date. We use large-scale kinase inhibitor profiling to characterize the selectivity of these molecules as well as examine the consequences of potential off-target effects in chemical genetic experiments. The molecules reported here will serve as powerful tools in efforts to extend AS-kinase technology to the entire kinome and the principles discovered may help in the design of other engineered enzyme/ligand pairs.


Asunto(s)
Diseño de Fármacos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA