Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Appl Spectrosc ; 78(4): 412-422, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38317274

RESUMEN

Plutonium research has been stifled by the significant number of administrative controls and safety procedures, space and instrumentation limitations in radiological gloveboxes, and the potential for personnel and equipment contamination. To address the limited number of spectroscopic studies in Pu-bearing compounds in the current scientific literature, this work presents the use of double-walled cells (DWCs) in "clean" buildings/laboratories as an alternative to research in radiological gloveboxes. This study reports the first laser-induced breakdown spectroscopy (LIBS) experiments of a PuO2 pellet contained within a DWC, where the formation of elemental (atomic and ionic) species as well as the evolution from elemental to molecular products (PuxOy) was measured. Raman spectroscopy was also used to characterize the surface of the ablated pellet and the particulates deposited on the window of the inner cell. The full width half-maximum of the T2g band enabled us to obtain an estimate of the temperature at the pellet surface after the ablation pulse and the particulates based on the crystal lattice disorder. Particulates deposited on the window of the DWC during laser ablation were characterized using scanning electron microscopy, where molten irregular particulates and spheroids were observed. This exciting research conducted in a DWC describes our initial attempts to incorporate LIBS in the arsenal of spectroscopic tools for nuclear forensics applications.

2.
Appl Spectrosc ; 77(5): 449-456, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36464665

RESUMEN

Diffuse reflectance spectroscopy measurements in the shortwave infrared (930-1600 nm) spectral region were acquired for Pu2(C2O4)3•9H2O and its thermal decomposition product, PuO2. We analyzed a total of eight PuO2 samples that were produced at different calcination temperatures (300, 350, 450, 525, 600, 675, 750, and 900 °C). Our goal was to identify spectroscopic fingerprints that could be used to gain retrospective information regarding the production parameters of these important nuclear compounds. The diffuse reflectance spectrum of Pu2(C2O4)3•9H2O features several broad bands that currently preclude detailed analysis. However, all PuO2 samples produced relatively sharp spectral features that got sharper and more intense for samples that were produced at higher calcination temperatures. The electronic band observed at 1433 nm in the diffuse reflectance spectra of PuO2 was found to be a sensitive indicator of crystallinity; a result that is corroborated by ancillary Raman spectroscopy measurements. Principal component analysis of diffuse reflectance spectra was able to clearly rank and categorize PuO2 samples based on the calcination temperature that was employed during their production. Thus, we show herein that important retrospective information pertaining to the process history of PuO2 can be gained through the relatively simplistic combination of diffuse reflectance spectroscopy and principal component analysis. This discovery presents a new method for determining the provenance and process history of PuO2 and should have an impact in the fields of nuclear forensics and nuclear nonproliferation.

3.
Appl Spectrosc ; 77(2): 151-159, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36138571

RESUMEN

Lithium isotopic ratios have wide ranging applications as chemical signatures, including improved understanding of geochemical processes and battery development. Measurement of isotope ratios using optical spectroscopies would provide an alternative to traditional mass spectrometric methods, which are expensive and often limited to a chemical laboratory. Raman spectra of 7Li2CO3, 6Li2CO3, 7LiOH*H2O, and 6LiOH*H2O have been measured to determine the effect of lithium isotope substitution on the Raman molecular vibrations. Thirteen peaks were observed in the spectrum of lithium carbonate, with discernable isotopic shifts occurring in eleven of the 13 vibrations, two of which have not been previously reported in the literature. The spectrum of lithium hydroxide monohydrate contained nine peaks, with discernable isotopic shifts occurring in eight of the nine vibrations, four of which have not been previously reported in the literature. The Raman spectral data reported here for lithium carbonate and lithium hydroxide monohydrate are in agreement with the previously reported works in the literature, in which the Raman active modes of these molecules were first identified and assigned. However, due to the stability and resolution of the detection system used in this work, isotopic shifts with a magnitude less than one wavenumber have been identified. Principal component regression was used to evaluate the sensitivity to isotopic content of small Raman peak shifts in Li2CO3 and indicates differences greater than 2 atom% could be reliably determined. These measurements add to the body of work on lithium isotope Raman spectroscopy for these two compounds and increases the number of Raman bands which could be used for lithium isotope content analysis.

4.
J Phys Chem Lett ; 10(21): 6885-6891, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31618033

RESUMEN

The chemical and physical properties of microstructured materials vary with position. The photophysics of solute molecules can measure these local properties, but they often show multiple rates (rate dispersion), which complicates the interpretation. In the case of micelles, rate dispersion in a solute's anisotropy decay has been assigned to either local anisotropy or heterogeneity in the local viscosity. To resolve this conflict, the rotation of PM597 molecules in SDS micelles has been measured by polarized MUPPETS (multiple population-period transient spectroscopy). This 2D technique shows that heterogeneity is strong and that local anisotropy is minimal. The results suggest that on a subnanosecond time scale, the solute sees only one strong fluctuation of the micelle structure. The anisotropic, average structure emerges on longer time scales.

5.
J Chem Phys ; 145(5): 054119, 2016 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-27497551

RESUMEN

Nonexponential kinetics imply the existence of at least one slow variable other than the observable, that is, the system has a "hidden" coordinate. We develop a simple, but general, model that allows multidimensional correlation functions to be calculated for these systems. Homogeneous and heterogeneous mechanisms are both included, and slow exchange of the rates is allowed. This model shows that 2D and 3D correlation functions of the observable measure the distribution and kinetics of the hidden coordinate controlling the rate exchange. Both the mean exchange time and the shape of the exchange relaxation are measurable. However, complications arise because higher correlation functions are sums of multiple "pathways," each of which measures different dynamics. Only one 3D pathway involves exchange dynamics. Care must be used to extract exchange dynamics without contamination from other processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA