Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nat Biotechnol ; 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857725

RESUMEN

The broad application of precision cancer immunotherapies is limited by the number of validated neoepitopes that are common among patients or tumor types. To expand the known repertoire of shared neoantigen-human leukocyte antigen (HLA) complexes, we developed a high-throughput platform that coupled an in vitro peptide-HLA binding assay with engineered cellular models expressing individual HLA alleles in combination with a concatenated transgene harboring 47 common cancer neoantigens. From more than 24,000 possible neoepitope-HLA combinations, biochemical and computational assessment yielded 844 unique candidates, of which 86 were verified after immunoprecipitation mass spectrometry analyses of engineered, monoallelic cell lines. To evaluate the potential for immunogenicity, we identified T cell receptors that recognized select neoepitope-HLA pairs and elicited a response after introduction into human T cells. These cellular systems and our data on therapeutically relevant neoepitopes in their HLA contexts will aid researchers studying antigen processing as well as neoepitope targeting therapies.

2.
Pharmaceutics ; 15(2)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36839922

RESUMEN

Over the past few decades, the complexity of molecular entities being advanced for therapeutic purposes has continued to evolve. A main propellent fueling innovation is the perpetual mandate within the pharmaceutical industry to meet the needs of novel disease areas and/or delivery challenges. As new mechanisms of action are uncovered, and as our understanding of existing mechanisms grows, the properties that are required and/or leveraged to enable therapeutic development continue to expand. One rapidly evolving area of interest is that of chemically enhanced peptide and protein therapeutics. While a variety of conjugate molecules such as antibody-drug conjugates, peptide/protein-PEG conjugates, and protein conjugate vaccines are already well established, others, such as antibody-oligonucleotide conjugates and peptide/protein conjugates using non-PEG polymers, are newer to clinical development. This review will evaluate the current development landscape of protein-based chemical conjugates with special attention to considerations such as modulation of pharmacokinetics, safety/tolerability, and entry into difficult to access targets, as well as bioavailability. Furthermore, for the purpose of this review, the types of molecules discussed are divided into two categories: (1) therapeutics that are enhanced by protein or peptide bioconjugation, and (2) protein and peptide therapeutics that require chemical modifications. Overall, the breadth of novel peptide- or protein-based therapeutics moving through the pipeline each year supports a path forward for the pursuit of even more complex therapeutic strategies.

3.
Transl Oncol ; 27: 101559, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36279715

RESUMEN

BACKGROUND: Recent advances in single-cell technologies and an improved understanding of tumor antigens have empowered researchers to investigate tumor antigen-specific CD8+ T cells at the single-cell level. Peptide-MHC I tetramers are often utilized to enrich antigen-specific CD8+ T cells, which however, introduces the undesired risk of altering their clonal distribution or their transcriptional state. This study addresses the feasibility of utilizing tetramers to enrich antigen-specific CD8+ T cells for single-cell analysis. METHODS: HLA-A*02:01-restricted human cytomegalovirus (CMV) pp65 peptide-specific CD8+ T cells were used as a model for analyzing antigen-specific CD8+ T cells. Single-cell RNA sequencing and TCR sequencing were performed to compare the frequency and gene expression profile of pp65-specific TCR clones between tetramer-sorted, unstimulated- and tetramer-stimulated total CD8+ T cells. RESULTS: The relative frequency of pp65-specific TCR clones and their transcriptional profile remained largely unchanged following tetramer-based sorting. In contrast, tetramer-mediated stimulation of CD8+ T cells resulted in significant gene expression changes in pp65-specific CD8+ T cells. An Antigen-Specific Response (ASR) gene signature was derived from tetramer-stimulated pp65-specific CD8+ T cells. The ASR signature had a predictive value and was significantly associated with progression free survival in lung cancer patients treated with anti-PD-L1, anti-VEGF, chemotherapy combination (NCT02366143). The predictive power of the ASR signature was independent of the conventional CD8 effector signature. CONCLUSIONS: Our findings validate the approach of enriching antigen-specific CD8+ T cells through tetramer-aided Fluorescence-Activated Cell Sorting (FACS) sorting for single-cell analysis and also identifies an ASR gene signature that has value in predicting response to cancer immunotherapy.

4.
Front Immunol ; 13: 961105, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159875

RESUMEN

Most patients with advanced non-small cell lung cancer (NSCLC) do not achieve a durable remission after treatment with immune checkpoint inhibitors. Here we report the clinical history of an exceptional responder to radiation and anti-program death-ligand 1 (PD-L1) monoclonal antibody, atezolizumab, for metastatic NSCLC who remains in a complete remission more than 8 years after treatment. Sequencing of the patient's T cell repertoire from a metastatic lesion and the blood before and after anti-PD-L1 treatment revealed oligoclonal T cell expansion. Characterization of the dominant T cell clone, which comprised 10% of all clones and increased 10-fold in the blood post-treatment, revealed an activated CD8+ phenotype and reactivity against 4 HLA-A2 restricted neopeptides but not viral or wild-type human peptides, suggesting tumor reactivity. We hypothesize that the patient's exceptional response to anti-PD-L1 therapy may have been achieved by increased tumor immunogenicity promoted by pre-treatment radiation therapy as well as long-term persistence of oligoclonal expanded circulating T cells.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Antígeno HLA-A2 , Humanos , Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Linfocitos T
5.
Anal Chem ; 94(42): 14593-14602, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36179215

RESUMEN

Immune monitoring in cancer immunotherapy involves screening CD8+ T-cell responses against neoantigens, the tumor-specific peptides presented by Major histocompatibility complex Class I (MHCI) on the cell surface. High-throughput immune monitoring requires methods to produce and characterize small quantities of thousands of MHCI-peptide complexes that may be tested for a patient's T-cell response. MHCI synthesis has been achieved using a photocleavable peptide that is exchanged by the neoantigen; however, assays that measure peptide exchange currently disassemble the complex prior to analysis─precluding direct molecular characterization. Here, we use native mass spectrometry (MS) to profile intact recombinant MHCI complexes and directly measure peptide exchange. Coupled with size-exclusion chromatography or capillary-zone electrophoresis, the assay identified all tested human leukocyte antigen (HLA)/peptide combinations in the nanomole to picomole range with minimal run time, reconciling the synthetic and analytical requirements of MHCI-peptide screening with the downstream T-cell assays. We further show that the assay can be "multiplexed" by measuring exchange of multiple peptides simultaneously and also enables calculation of Vc50, a measure of gas-phase stability. Additionally, MHCI complexes were fragmented by top-down sequencing, demonstrating that the intact complex, peptide sequence, and their binding affinity can be determined in a single analysis. This screening tool for MHCI-neoantigen complexes represents a step toward the application of state-of-the-art MS technology in translational settings. Not only is this assay already informing on the viability of immunotherapy in practice, the platform also holds promise to inspire novel MS readouts for increasingly complex biomolecules used in the diagnosis and treatment of disease.


Asunto(s)
Antígenos de Histocompatibilidad Clase I , Péptidos , Humanos , Antígenos de Histocompatibilidad Clase I/metabolismo , Péptidos/química , Espectrometría de Masas , Antígenos HLA , Antígenos de Neoplasias
6.
Mol Cell Proteomics ; 20: 100108, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34129938

RESUMEN

Advances in several key technologies, including MHC peptidomics, have helped fuel our understanding of basic immune regulatory mechanisms and the identification of T cell receptor targets for the development of immunotherapeutics. Isolating and accurately quantifying MHC-bound peptides from cells and tissues enables characterization of dynamic changes in the ligandome due to cellular perturbations. However, the current multistep analytical process is challenging, and improvements in throughput and reproducibility would enable rapid characterization of multiple conditions in parallel. Here, we describe a robust and quantitative method whereby peptides derived from MHC-I complexes from a variety of cell lines, including challenging adherent lines such as MC38, can be enriched in a semiautomated fashion on reusable, dry-storage, customized antibody cartridges. Using this method, a researcher, with very little hands-on time and in a single day, can perform up to 96 simultaneous enrichments at a similar level of quality as a manual workflow. TOMAHAQ (Triggered by Offset, Multiplexed, Accurate-mass, High-resolution, and Absolute Quantification), a targeted mass spectrometry technique that combines sample multiplexing and high sensitivity, was employed to characterize neoepitopes displayed on MHC-I by tumor cells and to quantitatively assess the influence of neoantigen expression and induced degradation on neoepitope presentation. This unique combination of robust semiautomated MHC-I peptide isolation and high-throughput multiplexed targeted quantitation allows for both the routine analysis of >4000 unique MHC-I peptides from 250 million cells using nontargeted methods, as well as quantitative sensitivity down to the low amol/µl level using TOMAHAQ targeted MS.


Asunto(s)
Epítopos , Antígenos de Histocompatibilidad Clase I/química , Proteómica/métodos , Animales , Línea Celular Tumoral , Escherichia coli/genética , Antígenos de Histocompatibilidad Clase I/genética , Espectrometría de Masas/métodos , Ratones , Proteínas Recombinantes , Flujo de Trabajo
7.
Protein Sci ; 30(6): 1169-1183, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33840137

RESUMEN

Despite the need to monitor the impact of Cancer Immunotherapy (CI)/Immuno-Oncology (IO) therapeutics on neoantigen-specific T-cell responses, very few clinical programs incorporate this aspect of immune monitoring due to the challenges in high-throughput (HTP) generation of Major Histocompatibility Complex Class I (MHCI) tetramers across a wide range of HLA alleles. This limitation was recently addressed through the development of MHCI complexes with peptides containing a nonnatural UV cleavable amino acid (conditional MHCI ligands) that enabled HTP peptide exchange upon UV exposure. Despite this advancement, the number of alleles with known conditional MHCI ligands is limited. We developed a novel workflow to enable identification and validation of conditional MHCI ligands across a range of HLA alleles. First, known peptide binders were screened via an enzyme-linked immunosorbent assay (ELISA) assay. Conditional MHCI ligands were designed using the highest-performing peptides and evaluated in the same ELISA assay. The top performers were then selected for scale-up production. Next-generation analytical techniques (LC/MS, SEC-MALS, and 2D LC/MS) were used to characterize the complex after refolding with the conditional MHCI ligands. Finally, we used 2D LC/MS to evaluate peptide exchange with these scaled-up conditional MHCI complexes after UV exposure with validated peptide binders. Successful peptide exchange was observed for all conditional MHCI ligands upon UV exposure, validating our screening approach. This approach has the potential to be broadly applied and enable HTP generation of MHCI monomers and tetramers across a wider range of HLA alleles, which could be critical to enabling the use of MHCI tetramers to monitor neoantigen-specific T-cells in the clinic.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/química , Péptidos/química , Humanos , Ligandos
8.
Nanoscale Adv ; 3(13): 3929-3941, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-36133017

RESUMEN

Nanolipoprotein particles (NLPs) have been evaluated as an in vivo delivery vehicle for a variety of molecules of therapeutic interest. However, delivery of peptide-like drugs in combination with therapeutic Fabs has not yet been evaluated. In this study, we describe the development and characterization of cystine-knot peptide (CKP)-containing NLPs and Fab-CKP-NLP conjugates. CKPs were incorporated into NLPs using a self-assembly strategy. The trypsin inhibitor EETI-II, a model CKP, was produced with a C16 fatty acyl chain to enable incorporation of the CKP into the lipid bilayer core during NLP assembly. The CKP-NLP retained trypsin inhibitory function although the overall activity was reduced by ∼5 fold compared to free CKP, which was presumably due to steric hindrance. The NLP platform was also shown to accommodate up to ∼60 CKP molecules. Moreover, the stability of the CKP-NLP was comparable to the NLP control, displaying a relatively short half-life (∼1 h) in 50% serum at 37 °C. Therapeutic Fabs were also loaded onto the CKP-NLP by introducing thiol-reactive lipids that would undergo a covalent reaction with the Fab. Using this strategy, Fab loading could be reliably controlled from 1-50 Fabs per CKP-NLP and was found to be independent of CKP density. Surprisingly, Fab incorporation into CKP-NLPs led to a substantial improvement in NLP stability (half-life > 24 h) at 37 °C; also, there was no reduction in CKP activity in the Fab-CKP-NLP conjugates compared to CKP-NLPs. Altogether, our data demonstrate the potential of NLPs as a promising platform for the targeted or multidrug delivery of peptide-based drug candidates in combination with Fabs.

9.
Bioconjug Chem ; 31(8): 1995-2007, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32701261

RESUMEN

Nanolipoprotein particles (NLPs), a lipid bilayer-based nanoparticle platform, have recently been developed for in vivo delivery of a variety of molecules of therapeutic interest, but their potential to deliver Fabs with valencies that exceed those of current multivalent formats has not yet been evaluated. Here we describe the development, optimization, and characterization of Fab-NLP conjugates. NLPs were generated with maleimide reactive lipids for conjugation to a Fab with a C-terminal cysteine. Of note, maleimide reactive lipids were shown to conjugate to the apolipoprotein when the NLPs were assembled at pH 7.4. However, this undesirable reaction was not observed when assembled at pH 6. Site-specific Fab conjugation conditions were then optimized, and conjugation of up to 30 Fab per NLP was demonstrated. Interestingly, although conjugation of higher numbers of Fabs had a significant impact on NLP molecular weight, only a minimal impact on NLP hydrodynamic radius was observed, indicating that particle size is largely dictated by the discoidal shape of the NLP. Fab-NLP viscosity and its stability upon lyophilization were also evaluated as an assessment of the manufacturability of the Fab-NLP. Significantly higher Fab concentrations were achieved with the Fab-NLP conjugates relative to another multivalent format (Fab-PEG conjugates). Fab conjugation to the NLP was also not found to have an impact on Fab activity in both an inhibitory and agonist setting. Finally, the stability of the Fab-NLP conjugates was evaluated in 50% serum and Fab-NLPs demonstrated increased stability, with >63% of Fab-NLP remaining intact after 24 h at Fab per particle ratios of 7 or greater. Our findings suggest Fab-NLPs are a promising platform for the targeted delivery of Fabs in a multivalent format and are compatible with established manufacturing processes.


Asunto(s)
Fragmentos Fab de Inmunoglobulinas/química , Lipoproteínas/química , Nanoestructuras/química , Sistemas de Liberación de Medicamentos , Fragmentos Fab de Inmunoglobulinas/farmacología , Maleimidas/química , Reología
10.
Nat Commun ; 10(1): 5228, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31745090

RESUMEN

Profound global loss of DNA methylation is a hallmark of many cancers. One potential consequence of this is the reactivation of transposable elements (TEs) which could stimulate the immune system via cell-intrinsic antiviral responses. Here, we develop REdiscoverTE, a computational method for quantifying genome-wide TE expression in RNA sequencing data. Using The Cancer Genome Atlas database, we observe increased expression of over 400 TE subfamilies, of which 262 appear to result from a proximal loss of DNA methylation. The most recurrent TEs are among the evolutionarily youngest in the genome, predominantly expressed from intergenic loci, and associated with antiviral or DNA damage responses. Treatment of glioblastoma cells with a demethylation agent results in both increased TE expression and de novo presentation of TE-derived peptides on MHC class I molecules. Therapeutic reactivation of tumor-specific TEs may synergize with immunotherapy by inducing inflammation and the display of potentially immunogenic neoantigens.


Asunto(s)
Antígenos de Neoplasias/inmunología , Biología Computacional/métodos , Elementos Transponibles de ADN/inmunología , Neoplasias/inmunología , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Línea Celular Tumoral , Metilación de ADN/genética , Metilación de ADN/inmunología , Elementos Transponibles de ADN/genética , Expresión Génica/inmunología , Perfilación de la Expresión Génica , Humanos , Inmunoterapia/métodos , Neoplasias/genética , Neoplasias/terapia , Análisis de Secuencia de ARN
11.
Bioconjug Chem ; 29(7): 2468-2477, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-29856915

RESUMEN

Despite the recent success of antibody-drug conjugates (ADCs) in cancer therapy, a detailed understanding of their entry, trafficking, and metabolism in cancer cells is limited. To gain further insight into the activation mechanism of ADCs, we incorporated fluorescence resonance energy transfer (FRET) reporter groups into the linker connecting the antibody to the drug and studied various aspects of intracellular ADC processing mechanisms. When comparing the trafficking of the antibody-FRET drug conjugates in various different model cells, we found that the cellular background plays an important role in how the antigen-mediated antibody is processed. Certain tumor cells showed limited cytosolic transport of the payload despite efficient linker cleavage. Our FRET assay provides a facile and robust assessment of intracellular ADC activation that may have significant implications for the future development of ADCs.


Asunto(s)
Transporte Biológico , Transferencia Resonante de Energía de Fluorescencia , Inmunoconjugados/farmacocinética , Permeabilidad de la Membrana Celular , Reactivos de Enlaces Cruzados/química , Humanos , Inmunoconjugados/metabolismo , Péptidos
12.
Bioconjug Chem ; 29(4): 1155-1167, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29481745

RESUMEN

Previous investigations on antibody-drug conjugate (ADC) stability have focused on drug release by linker-deconjugation due to the relatively stable payloads such as maytansines. Recent development of ADCs has been focused on exploring technologies to produce homogeneous ADCs and new classes of payloads to expand the mechanisms of action of the delivered drugs. Certain new ADC payloads could undergo metabolism in circulation while attached to antibodies and thus affect ADC stability, pharmacokinetics, and efficacy and toxicity profiles. Herein, we investigate payload stability specifically and seek general guidelines to address payload metabolism and therefore increase the overall ADC stability. Investigation was performed on various payloads with different functionalities (e.g., PNU-159682 analog, tubulysin, cryptophycin, and taxoid) using different conjugation sites (HC-A118C, LC-K149C, and HC-A140C) on THIOMAB antibodies. We were able to reduce metabolism and inactivation of a broad range of payloads of THIOMAB antibody-drug conjugates by employing optimal conjugation sites (LC-K149C and HC-A140C). Additionally, further payload stability was achieved by optimizing the linkers. Coupling relatively stable sites with optimized linkers provided optimal stability and reduction of payloads metabolism in circulation in vivo.


Asunto(s)
Anticuerpos/química , Inmunoconjugados/química , Factores Inmunológicos/química , Preparaciones Farmacéuticas/química , Antígenos/inmunología , Sitios de Unión , Estabilidad de Medicamentos , Humanos , Inmunoconjugados/administración & dosificación , Inmunoconjugados/farmacocinética , Factores Inmunológicos/administración & dosificación , Factores Inmunológicos/farmacocinética
13.
J Med Chem ; 60(23): 9490-9507, 2017 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-29112410

RESUMEN

Three rationally designed pyrrolobenzodiazepine (PBD) drug-linkers have been synthesized via intermediate 19 for use in antibody-drug conjugates (ADCs). They lack a cleavable trigger in the linker and consist of a maleimide for cysteine antibody conjugation, a hydrophilic spacer, and either an alkyne (6), triazole (7), or piperazine (8) link to the PBD. In vitro IC50 values were 11-48 ng/mL in HER2 3+ SK-BR-3 and KPL-4 (7 inactive) for the anti-HER2 ADCs (HER2 0 MCF7, all inactive) and 0.10-1.73 µg/mL (7 inactive) in CD22 3+ BJAB and WSU-DLCL2 for anti-CD22 ADCs (CD22 0 Jurkat, all inactive at low doses). In vivo antitumor efficacy for the anti-HER2 ADCs in Founder 5 was observed with tumor stasis at 0.5-1 mg/kg, 1 mg/kg, and 3-6 mg/kg for 6, 8, and 7, respectively. Tumor stasis at 2 mg/kg was observed for anti-CD22 6 in WSU-DLCL2. In summary, noncleavable PBD-ADCs exhibit potent activity, particularly in HER2 models.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/uso terapéutico , Benzodiazepinas/química , Benzodiazepinas/uso terapéutico , Inmunoconjugados/química , Inmunoconjugados/uso terapéutico , Neoplasias/tratamiento farmacológico , Pirroles/química , Pirroles/uso terapéutico , Animales , Antineoplásicos/farmacología , Benzodiazepinas/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Dimerización , Femenino , Humanos , Inmunoconjugados/farmacología , Ratones , Modelos Moleculares , Pirroles/farmacología , Receptor ErbB-2/antagonistas & inhibidores , Lectina 2 Similar a Ig de Unión al Ácido Siálico/antagonistas & inhibidores
14.
Anal Chem ; 89(10): 5476-5483, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28429938

RESUMEN

Antibody-drug conjugates (ADCs) represent a promising class of therapeutics for the targeted delivery of highly potent cytotoxic drugs to tumor cells to improve bioactivity while minimizing side effects. ADCs are composed of both small and large molecules and therefore have complex molecular structures. In vivo biotransformations may further increase the complexity of ADCs, representing a unique challenge for bioanalytical assays. Quadrupole-time-of-flight mass spectrometry (Q-TOF MS) with electrospray ionization has been widely used for characterization of intact ADCs. However, interpretation of ADC biotransformations with small mass changes, for the intact molecule, remains a limitation due to the insufficient mass resolution and accuracy of Q-TOF MS. Here, we have investigated in vivo biotransformations of multiple site-specific THIOMAB antibody-drug conjugates (TDCs), in the intact form, using a high-resolution, accurate-mass (HR/AM) MS approach. Compared with conventional Q-TOF MS, HR/AM Orbitrap MS enabled more comprehensive identification of ADC biotransformations. It was particularly beneficial for characterizing ADC modifications with small mass changes such as partial drug loss and hydrolysis. This strategy has significantly enhanced our capability to elucidate ADC biotransformations and help understand ADC efficacy and safety in vivo.


Asunto(s)
Inmunoconjugados/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Animales , Biotransformación , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa , Inmunoconjugados/sangre , Ratones , Ratones SCID , Oligopéptidos/metabolismo , Ratas , Ratas Sprague-Dawley
15.
ACS Med Chem Lett ; 7(11): 988-993, 2016 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-27882196

RESUMEN

Disulfide bonds could be valuable linkers for a variety of therapeutic applications requiring tunable cleavage between two parts of a molecule (e.g., antibody-drug conjugates). The in vitro linker immolation of ß-mercaptoethyl-carbamate disulfides and DNA alkylation properties of associated payloads were investigated to understand the determinant of cell killing potency of anti-CD22 linked pyrrolobenzodiazepine (PBD-dimer) conjugates. Efficient immolation and release of a PBD-dimer with strong DNA alkylation properties were observed following disulfide cleavage of methyl- and cyclobutyl-substituted disulfide linkers. However, the analogous cyclopropyl-containing linker did not immolate, and the associated thiol-containing product was a poor DNA alkylator. As predicted from these in vitro assessments, the related anti-CD22 ADCs showed different target-dependent cell killing activities in WSU-DLCL2 and BJAB cell lines. These results demonstrate how the in vitro immolation models can be used to help design efficacious ADCs.

16.
Nature ; 527(7578): 323-8, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26536114

RESUMEN

Staphylococcus aureus is considered to be an extracellular pathogen. However, survival of S. aureus within host cells may provide a reservoir relatively protected from antibiotics, thus enabling long-term colonization of the host and explaining clinical failures and relapses after antibiotic therapy. Here we confirm that intracellular reservoirs of S. aureus in mice comprise a virulent subset of bacteria that can establish infection even in the presence of vancomycin, and we introduce a novel therapeutic that effectively kills intracellular S. aureus. This antibody-antibiotic conjugate consists of an anti-S. aureus antibody conjugated to a highly efficacious antibiotic that is activated only after it is released in the proteolytic environment of the phagolysosome. The antibody-antibiotic conjugate is superior to vancomycin for treatment of bacteraemia and provides direct evidence that intracellular S. aureus represents an important component of invasive infections.


Asunto(s)
Antibacterianos/farmacología , Bacteriemia , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Espacio Intracelular/microbiología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Vancomicina/farmacología , Animales , Antibacterianos/uso terapéutico , Bacteriemia/tratamiento farmacológico , Bacteriemia/microbiología , Portador Sano/tratamiento farmacológico , Portador Sano/microbiología , Diseño de Fármacos , Femenino , Inmunoconjugados/química , Espacio Intracelular/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Ratones , Pruebas de Sensibilidad Microbiana , Fagosomas/efectos de los fármacos , Fagosomas/metabolismo , Fagosomas/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/patología , Staphylococcus aureus/patogenicidad , Vancomicina/uso terapéutico
17.
J Med Chem ; 57(19): 7890-9, 2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25191794

RESUMEN

Antibody-drug conjugates (ADCs) have a significant impact toward the treatment of cancer, as evidenced by the clinical activity of the recently approved ADCs, brentuximab vedotin for Hodgkin lymphoma and ado-trastuzumab emtansine (trastuzumab-MCC-DM1) for metastatic HER2+ breast cancer. DM1 is an analog of the natural product maytansine, a microtubule inhibitor that by itself has limited clinical activity and high systemic toxicity. However, by conjugation of DM1 to trastuzumab, the safety was improved and clinical activity was demonstrated. Here, we report that through chemical modification of the linker-drug and antibody engineering, the therapeutic activity of trastuzumab maytansinoid ADCs can be further improved. These improvements include eliminating DM1 release in the plasma and increasing the drug load by engineering four cysteine residues into the antibody. The chemical synthesis of highly stable linker-drugs and the modification of cysteine residues of engineered site-specific antibodies resulted in a homogeneous ADC with increased therapeutic activity compared to the clinically approved ADC, trastuzumab-MCC-DM1.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Antineoplásicos/síntesis química , Inmunoconjugados/farmacología , Maitansina/análogos & derivados , Ingeniería de Proteínas , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Ratones , Trastuzumab
18.
Bioconjug Chem ; 24(5): 772-9, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23578050

RESUMEN

Antibody-drug conjugates (ADCs) are target-specific anticancer agents consisting of cytotoxic drugs covalently linked to a monoclonal antibody. The number of ADCs in the clinic is growing, and therefore thorough characterization of the quantitative assays used to measure ADC concentrations in support of pharmacokinetic, efficacy, and safety studies is of increasing importance. Cytotoxic drugs such as the tubulin polymerization inhibiting auristatin, monomethyl auristatin E, have been conjugated to antibodies via cleavable linkers (MC-vc-PAB) through internal cysteines. This results in a heterogeneous mixture of antibody species with drug-to-antibody ratios (DAR) ranging from 0 to 8. In order to characterize the assays used to quantitate total MC-vc-PAB-MMAE ADCs (conjugated and unconjugated antibody), we used purified fractions with defined DARs from 6 therapeutic antibodies to evaluate different assay formats and reagents. Our investigations revealed that for quantitation of total antibody, including all unconjugated and conjugated antibody species, sandwich ELISA formats did not always allow for recovery of all purified DAR fractions (DAR 0-8) to within ±20% of the expected values at the reagent concentrations tested. In evaluating alternative approaches, we found that the recovery of DAR fractions with semihomogeneous assay (SHA) formats, in which sample, capture, and detection reagents are preincubated in solution, were less affected by the antibody's MMAE drug load as compared to traditional stepwise sandwich ELISAs. Thus, choosing the optimal assay format and reagents for total antibody assays is valuable for developing accurate quantitative assays.


Asunto(s)
Antineoplásicos/farmacocinética , Inmunotoxinas/farmacocinética , Oligopéptidos/farmacocinética , Moduladores de Tubulina/farmacocinética , Animales , Antineoplásicos/química , Ensayo de Inmunoadsorción Enzimática , Inmunotoxinas/química , Ratones , Ratones SCID , Oligopéptidos/química , Moduladores de Tubulina/química
19.
Nucl Med Biol ; 37(3): 289-97, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20346868

RESUMEN

UNLABELLED: Three thiol reactive reagents were developed for the chemoselective conjugation of desferrioxamine (Df) to a monoclonal antibody via engineered cysteine residues (thio-trastuzumab). The in vitro stability and in vivo imaging properties of site-specifically radiolabeled (89)Zr-Df-thio-trastuzumab conjugates were investigated. METHODS: The amino group of desferrioxamine B was acylated by bromoacetyl bromide, N-hydroxysuccinimidyl iodoacetate, or N-hydroxysuccinimidyl 4-[N-maleimidomethyl]cyclohexane-1-carboxylate to obtain thiol reactive reagents bromoacetyl-desferrioxamine (Df-Bac), iodoacetyl-desferrioxamine (Df-Iac) and maleimidocyclohexyl-desferrioxamine (Df-Chx-Mal), respectively. Df-Bac and Df-Iac alkylated the free thiol groups of thio-trastuzumab by nucleophilic substitution forming Df-Ac-thio-trastuzumab, while the maleimide reagent Df-Chx-Mal reacted via Michael addition to provide Df-Chx-Mal-thio-trastuzumab. The conjugates were radiolabeled with (89)Zr and evaluated for serum stability, and their positron emission tomography (PET) imaging properties were investigated in a BT474M1 (HER2-positive) breast tumor mouse model. RESULTS: The chemoselective reagents were obtained in 14% (Df-Bac), 53% (Df-Iac) and 45% (Df-Chx-Mal) yields. Site-specific conjugation of Df-Chx-Mal to thio-trastuzumab was complete within 1 h at pH 7.5, while Df-Iac and Df-Bac respectively required 2 and 5 h at pH 9. Each Df modified thio-trastuzumab was chelated with (89)Zr in yields exceeding 75%. (89)Zr-Df-Ac-thio-trastuzumab and (89)Zr-Df-Chx-Mal-thio-trastuzumab were stable in mouse serum and exhibited comparable PET imaging capabilities in a BT474M1 (HER2-positive) breast cancer model reaching 20-25 %ID/g of tumor uptake and a tumor to blood ratio of 6.1-7.1. CONCLUSIONS: The new reagents demonstrated good reactivity with engineered thiol groups of trastuzumab and very good chelation properties with (89)Zr. The site-specifically (89)Zr-labeled thio-antibodies were stable in serum and showed PET imaging properties comparable to lysine conjugates.


Asunto(s)
Anticuerpos Monoclonales , Neoplasias de la Mama/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Radioinmunodetección/métodos , Radioisótopos , Circonio , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Neoplasias de la Mama/inmunología , Femenino , Humanos , Tasa de Depuración Metabólica , Ratones , Ratones Desnudos , Especificidad de Órganos , Radioisótopos/inmunología , Radiofármacos/síntesis química , Radiofármacos/inmunología , Distribución Tisular , Circonio/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA